NAPOMENA
Za tačnost unetih podataka o publikacijama, naučnim i umetničkim referencama odgovorni su autori.Danilo Karličić
Dodatne informacije
-
Lični podaci
- Datum rođenja: 31.10.1986.
- Mesto rođenja: Niš
-
Obrazovanje
- Fakultet: Mašinski fakultet u Nišu
- Odsek / Grupa / Smer: Mehatronika i upravljanje
- Godina diplomiranja: 2010.
-
Spisak publikacija
-
Monografije i poglavlja u monografijama:
Danilo Karličić, Tony Murmu, Sondipon Adhikari and Michael McCarthy,
Non-Local Structural Mechanics.
ISTE Ltd and John Wiley & Sons Inc, 2015,
ISBN 978-1-84821-522-1
-
Radovi u časopisima sa IMPACT faktorom:
[1] Karličić, D., Kozić, P., & Pavlović, R. (2014). Free transverse vibration of nonlocal viscoelastic orthotropic multi-nanoplate system (MNPS) embedded in a viscoelastic medium. Composite Structures, 115, 89-99.
[2] Kozić, P., Pavlović, R., & Karličić, D. (2014). The flexural vibration and buckling of the elastically connected parallel-beams with a Kerr-type layer in between. Mechanics Research Communications, 56, 83-89.
[3] Karličić, D., Cajić, M., Murmu, T., & Adhikari, S. (2015). Nonlocal longitudinal vibration of viscoelastic coupled double-nanorod systems. European Journal of Mechanics-A/Solids, 49, 183-196.
[4] Karličić, D., Murmu, T., Cajić, M., Kozić, P., & Adhikari, S. (2014). Dynamics of multiple viscoelastic carbon nanotube based nanocomposites with axial magnetic field. Journal of Applied Physics, 115(23), 234303.
[5] Karličić, D., Adhikari, S., Murmu, T., & Cajić, M. (2014). Exact closed-form solution for non-local vibration and biaxial buckling of bonded multi-nanoplate system. Composites Part B: Engineering, 66, 328-339.
[6] Karličić, D., Kozić, P., Adhikari, S., Cajić, M., Murmu, T., & Lazarević, M. (2015). Nonlocal mass-nanosensor model based on the damped vibration of single-layer graphene sheet influenced by in-plane magnetic field. International Journal of Mechanical Sciences, 96, 132-142.
[7] Karličić, D., Cajić, M., Murmu, T., Kozić, P., & Adhikari, S. (2015). Nonlocal effects on the longitudinal vibration of a complex multi-nanorod system subjected to the transverse magnetic field. Meccanica, 50(6), 1605-1621.
[8] Pavlović, I., Pavlović, R., Ćirić, I., & Karličić, D. (2015). Dynamic stability of nonlocal Voigt–Kelvin viscoelastic Rayleigh beams. Applied Mathematical Modelling. http://dx.doi.org/10.1016/j.apm.2015.02.044
[9] Karličić, D., Kozić, P., & Pavlović, R. (2015). Flexural vibration and buckling analysis of single-walled carbon nanotubes using different gradient elasticity theories based on Reddy and Huu-Tai formulations. Journal of Theoretical and Applied Mechanics, 53, 1, 217-233.
[10] Karličić, D., Jovanović, D., Kozić, P., Cajić, M., (2015), Thermal and magnetic effects on the vibration of a cracked nanobeam embedded in an elastic medium. Journal of Mechanics of Materials and Structures, 10(1), 43-62.
[11] Karličić, D., Cajić, M., Kozić, P., & Pavlović, I. (2015). Temperature effects on the vibration and stability behavior of multi-layered graphene sheets embedded in an elastic medium. Composite Structures, 131, 672–681.
[12] Karličić, D., Kozić, P., Murmu, T., & Adhikari, S. (2015). Vibration insight of a nonlocal viscoelastic coupled multi-nanorod system. European Journal of Mechanics-A/Solids, 54, 132-145.
[13] Karličić, D., Kozić, P., & Pavlović, R. (2016). Nonlocal vibration and stability of a multiple-nanobeam system coupled by the Winkler elastic medium.Applied Mathematical Modelling, 40(2), 1599-1614.
[14] Stamenković, M., Karličić, D., Janevski, G., & Kozić, P.,(2016). Nonlocal forced vibration of a double single-walled carbon nanotube system under the influence of an axial magnetic field, Journal of Mechanics of Materials and Structures, (accepted for publication)- http://msp.org/scripts/coming.php?jpath=jomms
[15] Cajić, M., Karličić, D., & Lazarević, M. (2016). Damped vibration of a nonlocal nanobeam resting on viscoelastic foundation: fractional derivative model with two retardation times and fractional parameters. Meccanica, DOI 10.1007/s11012-016-0417-z
-
Radovi u ostalim časopisima:
[1] Simonović, J., Karličić, D., & Cajić, M. (2014). ENERGY ANALYSIS OF FREE TRANSVERSE VIBRATIONS OF THE VISCO-ELASTICALLY CONNECTED DOUBLE-MEMBRANE SYSTEM. Facta Universitatis, Series: Mechanical Engineering, 12(3), 325-337.
[2] Karličić, D. (2012). Free Transversal Vibrations of a Double-Membrane System. Scientific Technical Review, 62(2), 55-61.
[3] Cajić, M., Karličić, D., Lazarević, M. (2015) Nonlocal vibration of a fractional order viscoelastic nanobeam with attached nanoparticle. Accepted for publication in Theoretical and Applied Mechanics, 42(3). ISSN: 1450-5584
-
Radovi na naučnim skupovima međunarodnog značaja:
[1] Karličić, D., Cajić, M., Energy Transfer Analysis of an Elastically Connected Circular Double-Membrane Compound System, 8th European Solid Mechanics Conference, July 9-13, 2012., Graz.
[2] Karličić, D., Pavlović, R., Effect of Pasternak foundation on flexural vibration and buckling of symmetric cross-ply laminates, Proceedings of the 4th International Congress of Serbian Society of Mechanics, IconSSM 2013, ISBN 978-86-909973-5-0, 553-558, http://www.ssm.org.rs/Congress2013/index.html
[3] Cajić M., Karličić D., Lazarević M., The state space model of a single-link flexible robot with a fractional order viscoelastic element in the joint, Proceedings of the 4th International Congress of Serbian Society of Mechanics, IconSSM 2013, ISBN 978-86-909973-5-0, 949-954, http://www.ssm.org.rs/Congress2013/index.html
[4] Simonović, J., Cajić, M., Karličić D., The forced vibrations of complex circular membrane system with visco-elastic coupling, Proceedings of the 4th International Congress of Serbian Society of Mechanics, IconSSM 2013, ISBN 978-86-909973-5-0,883-888, http://www.ssm.org.rs/Congress2013/index.html
[5] Karličić, D., Cajić, M., Stamenković, M. Nonlinear vibration of nonlocal Kelvin-Voigt viscoelastic nanobeam embedded in elastic medium. The 8th European Nonlinear Dynamics Conference (ENOC 2014), July 6-11, 2014, Vienna, Austria, ID 223, (Preliminary USB-Stick version of final CD-ROM volume (ISBN: 978-3-200-03433-4)).
[6] Cajić, M., Karličić, D., Lazarević, M. Nonlocal axial vibration of a fractional order viscoelastic nanorod. The 8th European Nonlinear Dynamics Conference (ENOC 2014), July 6-11, 2014, Vienna, Austria, ID 271, (Preliminary USB-Stick version of final CD-ROM volume (ISBN: 978-3-200-03433-4)).
[7] Karličić, D., Jovanović, D., Kozić, P., Cajić, M. (2015) Vibration of cracked nanobeam under the effects of thermal and magnetic fields. Proceeding of the 5th Serbian (30th YU) Congress on Theoretical and Applied Mechanics, 15-17 June, Aranđelovac, Serbia, - USB, G1c.(ISBN: 978-86-7892-715-7)
[8] Karličić, D., Cajić, M., Kozić, P., Pavlović, R. (2015) Thermal effects on vibration and stability of a multiple nanobeam system embedded in an elastic medium. Proceeding of the 5th Serbian (30th YU) Congress on Theoretical and Applied Mechanics, 15-17 June, Aranđelovac, Serbia - USB, S3b.(ISBN: 978-86-7892-715-7)
[9] Cajić, M., Karličić, D., Lazarević M. (2015) Nonlocal vibration of fractional order viscoelstic nanobeam with atached nanoparticle. Proceeding of the 5th Serbian (30th YU) Congress on Theoretical and Applied Mechanics, 15-17 June, Aranđelovac, Serbia - USB, I1c. (ISBN: 978-86-7892-715-7)
[10] Cajić, M. S., Lazarević, M. P., & Karličić, D. Z. (2015) Nonlocal frequency analysis of a nanobeam under axial magnetic field using finite element method. Proceedings of the 8th GRACM International Congress in Computational Mechanics, 12-15 July, Volos, Greece. (ISBN: 978-960-9439-36-7)