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             ABSTRACT.  
 

DNA transcription process is well described at biochemical level. During 
transcription double DNA interacts with transcription proteins; part of double DNA is 
unzipped, and only one chain helix is used as a matrix for transcription.  

For better understanding the DNA transcription process and its behavior 
through biomechanical point of view, we consider double DNA (dDNA) as an oscillatory 
system that oscillates in forced regimes. In this paper analytical expressions of the 
forced oscillations of the dDNA helix chains are presented for both introduced models, 
ideally elastic as well as fractional order model. On the basis of previous results (DNA 
mathematical models published by N. Kovaleva, L. Manevich in 2005 and 2007, and 
multipendulum models by Hedrih (Stevanović) and Hedrih) where we obtain main chain 
subsystems of the double DNA helix, new results analysis of the forced vibrations is 
done. There are different cases of the resonant state in one of the main chains, and there 
are no interactions between main chains.  

The possibilities of appearance of resonant regimes only in one of the two main 
chains is proved, as well as dynamical absorption under external one frequency forced 
excitations is considered.  

 
Keywords: Double DNA helix chain, forced vibrations, eigen main chains, resonant 

state, dynamical absorption, fractional order model.  
 

1 Introduction - DNA-structure and function 
DNA is a biological polymer which can exist in different forms (A, B, Z, E …) but 

only B  form can be  funded  in  live organisms. Chemically, DNA consists of  two  long 
polymers  of  simple  units  called  nucleotides,  with  backbones  made  of  sugars  and 
phosphate groups joined by ester bonds. To each sugar is attached one of four types of 
molecules called bases. (Adenine-A, thymine-T guanine-G and cytosine-C). Two bases on 
opposite  strands  are  linked  via  hydrogen  bonds  holding  the  two  strands  of  DNA 
together.    It  is  the  sequence  of  these  four  bases  along  the  backbone  that  encodes 
information.  

The basic function of DNA in the cell is to encode the genetic material. For using that 
information to make proteins, DNA molecule has to interact with other molecules in the cell. 
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DNA molecule is moving, changing its position and shape during the interactions. DNA 
molecules can be considered to be a mechanical structure on the nanolevel.  

The mechanical properties of DNA are closely related to its molecular structure and 
sequence, particularly the weakness of hydrogen bonds and electronic interactions that hold 
strands of DNA together compared to the strength of bonds within each strand. Every process 
which binds or reads DNA is able to use or modify the mechanical properties of DNA for 
purposes of recognition, packaging and modification. It is important to note the DNA found in 
many cells can be macroscopic in length - a few centimeters long for each human chromosome. 
Consequently, cells must compact or "package" DNA to carry it within them (Bryant et al, 
2003). 

Single-molecule biomechanics of DNA extension, bending and twisting; protein domain 
motion, deformation and unfolding; and the generation of mechanical forces and motions by 
bimolecular motors is another approach to explain the biological function of DNA in the cell 
(Bao, 2002). Knowledge of the elastic properties of DNA is required to understand the 
structural dynamics of cellular processes such as replication and transcription.  

There are different approaches to studding the mechanical properties of the DNA molecule 
(experimental, theoretical modeling).  

 
2 Mechanical properties of DNA achieved experimentally. 
 
 Experimental evidence suggests DNA mechanical properties, in particular intrinsic 
curvature and flexibility, have a role in many relevant biological processes. 
For small distortions, DNA overwinds under tension (see Ref. [13] by Jeff Gore, Zev Bryant, 
Marcelo (2006)). Lowering of the temperature does increase the DNA curvature. The DNA 
double helix is much more resistant to twisting deformations than bending deformations; almost 
all of the supercoiling pressure is normally relieved by writhing (see Ref. [1] by Javier Arsuaga, 
Robert K.-Z. Tan , Mariel Vazquez , De Witt Sumners , Stephen C. Harvey (2002)). The twist 
angle of the helix has been shown to depend on sequence when the molecule is in solution, both 
by the effects on supercoiling parameters when short segments of known sequence are inserted 
into closed circular DNA (see Refs.  [28] by Peck, L.J. and Wang, J.C. (1981) and [31] by 
Chang-Shung Tung1 and Stephen C.Harvey (1984). 
 Under low tension, DNA behaves like an isotropic flexible rod. At higher tensions, the 
behavior of over- and underwound molecules is different. In each case, DNA undergoes a 
structural change before the twist density necessary for buckling is reached (see Refs. [5] by 
Zev Bryant,  Michael D. Stone,  Jeff Gore, Steven B. Smith and Nicholas R. Cozzarelli (2003)). 
Mg2+ can induce or enhance curvature in DNA fragments and helps stabilize several types of 
DNA structures (see Ref. [4] by Brukner, S. Susic, M. Dlakic, A. Savic, S. Pongor (1994) ).  
DNA length varied in solution with different ionic force.  It is significantly longer in solution 
with lower ionic force (see Ref. [10] by C. Frontali, E. Dore, A. Ferrauto, E. Gratton, A. Bettini, 
M.R. Pozzan, E. Valdevit  (1979)). 
 
3. Mechanical models of the DNA 
 
 A number of mechanical models of the DNA double helix have been proposed till today. 
Different models are focusing on different aspects of the DNA molecule (biological, physical 
and chemical processes in which DNA is involved). A number of models have been constructed 
to describe different kinds of movements in a DNA molecule: asymmetric and symmetric 
motion; movements of long and short segments; twisting and stretching of dsDNA, twist-
opening conditions. We are going to mention some of the models that may explain twist-
opening conditions. 
Bryant et al (see Ref. [5] by Bryant et al, 2003) have shown that an over- or underwound DNA 
molecule behaves as a constant-torque wind-up motor capable of repeatedly producing 
thousands of rotations, and that an overstretched molecule acts as a force–torque converter. The 
production of continuous directed rotation by molecular devices has potential applications in 
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the construction of nanomechanical systems (see Ref. [2] by Bao, 2002). Polymer models are 
used to interpret single-molecule force-extension experiments on ssDNA and dsDNA. They 
show how combining the elasticity of two single nucleic acid strands with a description of the 
base-pairing interactions between them explains much of the phenomenology and kinetics of 
RNA and DNA ‘unzipping’ experiments” (see Refs. [7] by Cocco et al,2002; and [33] by Zhou 
and Lai, 2001). Eslami-Mossallam and Ejtehadi, (see Ref. [9] by Eslami-Mossallam and 
Ejtehadi, 2009) proposed the asymmetric elastic rod model for DNA. Their model accounts for 
the difference between the bending energies of positive and negative rolls, which comes from 
the asymmetric structure of the DNA molecule. The model can explain the high flexibility of 
DNA at small length scales, as well as kink formation at high deformation limit. Specially type 
of DNA models are soliton -existence supporting models. One of the first of this kind was 
Yakushevich model of DNA and models based on it (see Ref. [11] by Gaeta, 1992). Dynamics 
of topological solitons describing open states in the DNA double helix are studied in the 
framework of a model that takes into account asymmetry of the helix. Yakushevich, et al (see 
Ref. [32] by Yakushevich, et al, 2002) investigated interaction between the solitons, their 
interactions with the chain inhomogeneities, and stability of the solitons with respect to thermal 
oscillations and have shown that three types of topological solitons can occur in the DNA 
double chain. González and Martín-Landrove (see Ref. [12] by González and Martín-Landrove, 
1994) gave the complete qualitative analysis of soliton interaction in DNA torsional equations. 
The model emphasizes the importance of the solitons for opening of the double DNA helix. 
Thee region of the chain where there is a maximum opening is larger for the general case, since 
the asymptotical behavior for the kink type solitons is smoother than the one corresponding to 
the solutions in the particular case. There is possibility that an enzyme take charge for the 
opening of the chain. The supersonic solutions, since they represent states that are totally open, 
could contribute significantly to the fusion of the DNA chain to the enzymatic activity. The 
presence of a propagating soliton along the chain could contribute to its opening through the 
interaction among different types of open states. The composite model for DNA is also based 
on Yakushevich model (Y model). The mechanism for selecting the speed of solitons by tuning 
the physical parameters of the non-linear medium and the hierarchal separation of the relevant 
degrees of freedom are decribed in this model (see Refs. [8] by De Leo and Demelio, 2008; [6] 
by  Cadoni et al, 2008). In the symmetric twist-opening model of DNA the small amplitude 
dynamics of the model is shown to be governed by a solution of a set of coupled nonlinear 
Schrödinger equations. Conditions for modulation instability occurrence are presented and 
attention is paid to the impact of the backbone elastic constant K. It is shown that high values of 
K extend the instability region. This model can be reduced to a set of coupled discrete nonlinear 
system equations. The growth rate of instability has been evaluated and increases with the 
coupling constant K. The kink-bubble soliton, made of two part of different size, has been 
shown to be mobile. Authors supposed that the kink-bubble solution can be used the describe 
the internal dynamics which usually consists of long-range collective bending and twisting 
modes of the bases, short-range oscillations of individual bases, and the reorientation of the spin 
label (see Ref. [30] by Tabi et al, 2009).  

Binding of proteins and other ligands  on DNA, induces a strong deformation of the DNA 
structure.  

The aim of our work was to model the DNA dynamics (vibrations of DNA chains) as a 
biological system in a specific boundary condition that are possible to occur in a life system 
during regular function of DNA molecule. We consider double DNA (dDNA) as an oscillatory 
system that oscillates in forced regimes during the DNA transcription process.  

For mathematical descriptions we use References by Kovaleva and Manevich (see Refs. 
[26-27]), Hedrih (see Refs. [14-22]), Bačlić and Atanacković (see Ref. [3]), Hedrih and 
Filipobski (see Ref. [23]),  Hedrih and Hedrih (see Refs. [24-25]) and Rašković P. Danilo see 
Ref. [29]). 
 
4   DNA models by N. Kovaleva and L. Manevich  

 
To model oscillation of dDNA in forced regimes we use as a basic approach model of 

dDNA proposed by  N.Kovaleva, L.Manevich, V.Smirnov (see Ref [26]). They show that in a 
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double DNA helix localized excitation (breather) can exist which corresponds to predominant 
rotation of one chain and small perturbation of second chain using coarse-grained model of 
DNA double helix. 

 

   
Figure 1. a*    Figure 1. b*     Figure 1. c*  

 
 Figure 1. a* “Toy mechanical” model of DNA. a, DNA is modeled as an elastic rod (grey) 
wrapped helically by a stiff wire (red). see Ref. [9] by Jeff Gore, Zev Bryant, Marcelo (2006) 

Figure1. b* The model scheme of a double helix on six coarse-grained particles [10]. 
Figure 1.c*  Fragment of the DNA double chain consisting of three АТ base pairs. Longitudinal 

pitch of the  helix  ; transverse pitch  [11]. 
 
Reference [26] by N.Kovaleva, L.Manevich, V.Smirnov presented  8th conference on 

DSTA  2007, point out that solitons and breathers play a functional role in DNA chains. In a 
model, the DNA backbone is reduced to the polymeric structure and the base is covalently 
linked to the center of sugar ring group, thus a DNA molecule with N nucleotides corresponds 
to 3N interaction centers. Starting from a coarse-grained off-lattice model of DNA and using 
cylindrical coordinates, authors derive simplified continuum equations corresponding to 
vicinities of gap frequencies in the spectrum of linearized equations of motion. It is shown that 
obtained nonlinear continuum equations describing modulations of normal modes, admit 
spatially localized solitons, which can be identified with breathers. Authors formulated 
conditions of the breathers existence and estimate their characteristic parameters. The 
relationship between derived model and more simple and widely used models is discussed. The 
analytical results are compared with the data of numerical study of discrete equations of motion. 
See Figure 1.b*. 

Ref. [27] by N.Kovaleva, L.Manevich (2005)) presented at the 8th conference on 
Dinamical  systems theory and applications, presented a simplest model describing opening of 
DNA double helix. Corresponding differential equations are solved analytically using multiple-
scale expansions after transition to complex variables. Obtained solution corresponds to 
localized torsional nonlinear excitation – breather. Stability of breather is also investigated. 
 In this Reference [27] N.Kovaleva, L.Manevich (2005)) consider B form of the DNA 
molecule, the fragment of which is presented in Fig.1. b*. The lines in the figure correspond to 
skeleton of the double helix, black and gray rectangles show the bases in pairs (AT and GC). 
Let us focus our attention on the rotational motions of bases around the sugarphosphate chains 
in the plane perpendicular to the helix axis. See Figure 1.c* 

Authors deal with the planar DNA model in which the chains of the macromolecule 
form two parallel straight lines placed at a distance h  from each other, and the bases can make 
only rotation motions around their own chain, being all the time perpendicular to it. Authors 
accepted as generalized (independent) coordinates 1,kϕ  that are the angular displacement of the 

k -th base of the first chain, and as generalized (independent) coordinates 2,kϕ is the angular 

displacement of the k -th base of the second chain. Then, by using accepted generalized 
coordinates 1,kϕ  and 2,kϕ  for k -th bases of both chains in the DNA model, authors derived a 
system of differential equations describing DNA model vibrations in the following forms: 
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Here 1kJ ,  is the axial moment of mass inertia of the k -th base of the first chain; 

2,kJ  is the axial moment of mass inertia of the k -th base of the second chain, and the point 
denotes differentiation in time t. For the base pair the axial moments of mass inertia are equal to 

2
, ααrm=1kJ , 2

2, ββ rm=1kJ . The value of the base mass αm , the length αr , and the 

corresponding axial moment of mass inertia 2
, ααrm=1kJ for all possible base pair authors 

accepted as in the Reference  [19]. The fourth terms in previous system equations describe 
interaction of the neighboring bases along each of the macromolecule chains. Parameter ikK , , 

2,1=i characterizes the energy of interaction of the k -th base with the ( 1+k )-th one along 
the i -th chain 2,1=i . There are different estimations of rigidity. For the calculation that the 

most appropriate value is close ]/[106 3
, molkJKK ik ×== . 

 
5 Consideration of the basic DNA model - linearized Kovaleva-Manevich‘s DNA model
  

Let us investigate an oscillatory model of DNA, considered in the Reference [27] by 
N.Kovaleva, L. Manevich, (2005) and presented in the previous chapter III, by a system of 
differential equations (1) expressed by generalized (independent) coordinates 1,kϕ  and 2,kϕ  for 

k -th bases of both chains in the DNA model. 
For the beginning, it is necessary to consider a corresponding linearized system of the 

previous system of the differential equations in the following form: 
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or in the following form: 
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For the case of homogeneous systems we can take into consideration that are 
JJJ 2k1 == ,,k  and  KKK kk == 2,1, . 

By using change of the generalized coordinates 1,kϕ  and 2,kϕ  for k -th bases of both 

chains in the DNA model into following new kξ  and kη  by the following dependence (see 
Hedrih and Hedrih [17, 24, 25]): 

2,1, kkk ϕϕξ −=    and   2,1, kkk ϕϕη +=                                     (4) 
Previous system of differential equations (3) obtains the following form: 
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First series of the previous system equations are decoupled and independent with 

relations of the second series of the equations. Then we can conclude that new coordinates of 

kξ  and kη  are main coordinates of DNA chains and that we obtain two fictive decoupled 
eigen single chains of the DNA liner model. This is the first fundamental conclusion as an 
important property of the linear model of vibrations in a double DNA helix.   

Systems of differential equations (5)-(6) contain two separate subsystems of no 
autonomous differential equations expressed by coordinates of kξ  and kη  which are main 
coordinates of a double DNA chain helix system  and separate linear DNA model of forced 
vibrations  into two independent chains. 

 
6. Consideration of the forced vibrations of a basic DNA model - linearized Kovaleva-
Manevich‘s DNA model  

 
For obtaining general solutions of the both systems (5)-(6) of no autonomous 

differential equations which correspond to forced regimes of the main chains vibrations, for 
beginning it is necessary to find particular solutions of this system. Taking into account 
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previous systems (5)-(6) of no autonomous differential equations is possible to express in the 
form: 
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Particular solutions for first and second system (12)-(13), we propose in the forms: 
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the coupled chains each with four degree of freedom): 
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For same example other determinants ( )1,1vk∆  and ( )1,1
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obtain from corresponding two system determinates, ( )1,1v∆  and 
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1,1

3

1

14
1,1,0

1,1

1,1

1,1

1,1,0

1,11 2

121
1121

1121
1

=
=

=

− −=

−−+−
−−−+−

−−−+−
−

=∆ ∏ n
s

s
s

uvh

v
v

v
h

v

κµ
κµ

κµ

          (23) 
 

( ) ( )
( )

( )

( )( )3
1,1

3

1

14
1,1,0

1,1

1,1

1,1

1,1,0

1,11
~~2

~121
1~121

1~121
1

~~ =
=

=

− −=

−+−
−−+−

−−+−
−

=∆ ∏ n
r

r

r

uvh

v
v

v
h

v

µ
µ

µ
          (24) 

 

( )
( )

( )
( )

( )( )2
1,1

2

1

24
1,1,0

1,1

1,1

1,1,01,1

1,12 2

121
112

11
12

=
=

=

− −=

−−+−
−−−+

−−
−−+

=∆ ∏ n
s

s

s

uvh

v
v

hv

v

κµ
κµ

κµ

          (25) 
 

( )
( )

( )
( )

( )( )2
1,1

2

1

24
1,1,0

1,1

1,1

1,1,01,1

1,12
~~2

~121
1~12

11

~12

~~ =
=

=

− −=

−+−
−−+

−−
−+

=∆ ∏ n
r

r

r

uvh

v
v

hv

v

µ
µ

µ

       (26) 

 
 

( )
( )

( )

( )

( )( )1
1,11,1,0

1,1

1,1

1,1,01,1

1,13
~~2

12
11

121
112

=−=

−−+
−−

−−+−
−−−+

=∆ n
r

uvh

v

v
hv

v

κµ

κµ
κµ

    (27) 

 

( )
( )

( )

( )

( )( )1
1,11,1,0

1,1

1,1

1,1,01,1

1,13
~~2

~12
11

~121
1~12

~~ =−=

−+
−−

−+−
−−+

=∆ n
ruvh

v

v
hv

v

µ

µ
µ

                (28) 
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( )
( )

( )
( ) 1,1,0

1,1

1,1

1,1,01,1

1,14

1
121

1121
112

h
v

v
hv

v =

−
−−+−

−−−+−
−−−+

=∆
κµ

κµ
κµ

               (29) 

 

( )
( )

( )
( ) 1,1,0

1,1

1,1

1,1,01,1

1,14

1

~121
1~121

1~12

~~ h
v

v
hv

v =

−
−+−

−−+−
−−+

=∆
µ

µ
µ

   (30) 

 

1,km  

2,kc  2,1−kc
 2,+kc  

2,+kc  

1,1−km  1,1+km  

1,1−kc  1,1+kc  1,kc  

( )2,11,1 −− kkc  

2,km  2,+km  2,1−km  

( )2,11,1 ++ kkc  ( )2,1,kkc  
t1.1cosΩ0,1,1M

 

 
Figure 2. Double DNK Chain helix d model in the form of multipendulum system  with fixed 

ends 
 
Particular solutions of the considered examples with eight degree of freedom double 

DNA helix chain system containing two coupled chains each with four degree of freedom and 
excaited bey one frequency external excitation are in the following forms: 

( )( )
( )( )

t
uv

uvh
tN

s

s

s

n
s

s
port

s

1,1
4

1,1

4

1

3
1,1

3

1
1,1,0

1,111, cos
2

cos Ω

−

−

=Ω=

∏

∏
=

=

=
=

=ξ        (31) 

( )( )
( )( )

t
uv

uvh
tN

r

r

r

n
r

r
port

r

1,1
4

1,1

4

1

3
1,1

3

1
1,1,0

1,111, cos
~~2

~~

cos~
Ω

−

−

=Ω=

∏

∏
=

=

=
=

=η        (32) 

( )( )
( )( )

t
uv

uvh
tN

s

s

s

n
s

s
port

s

1,1
4

1,1

4

1

2
1,1

2

1
1,1,0

1,122, cos
4

cos Ω

−

−

=Ω=

∏

∏
=

=

=
=

=ξ        (33) 

( )( )
( )( )

t
uv

uvh
tN

r

r

r

n
r

r
port

r

1,1
4

1,1

4

14

2
1,1

2

1
1,1,0

1,122, cos
~~4

~~

cos~
Ω

−

−

=Ω=

∏

∏
=

=

=
=

=η        (34) 
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( )( )
( )( )

t
uv

uvh
tN

n
s

s

s

n

port
s

1,1

1,1

4

1

1
1,11,1,0

1,133, cos
8

cos Ω

−

−
=Ω=

∏
=

=

=

ξ     (35) 

( )( )
( )( )

t
uv

uvh
tN

n
r

r

r

n

port
r

1,1

1,1

4

1

1
1,11,1,0

1,1221 cos
~~8

~~
cos~

Ω

−

−
=Ω=

∏
=

=

=

η     (36) 

( )( )
t

uv

h
tN

s

s

s

port 1,1
4

1,1

4

1

1,1,0
1,144, cos

16
cos Ω

−

=Ω=

∏
=

=

ξ     (37) 

( )( )
t

uv

h
tN

r

r

r

port 1,1
4

1,1

4

1

1,1,0
1,144, cos

~~16
cos~

Ω

−

=Ω=

∏
=

=

η     (38) 

Solutions of the homogeneous system for considered example are: 

( )∑
=

=

+=
4

1
, cossin

s

s
sssskfree tkC αωϕξ , 4,3,2,1=k                    (39) 

 ( )∑
=

=

+=
4

1
,

~cossin
r

r
rrrrkfree tkD βωϑη , 4,3,2,1=k     (40) 

General solutions are: 

( ) kpart

s

s
sssskpartkfreek tkC ,

4

1
,, cossin ξαωϕξξξ ++=+= ∑

=

=

, 4,3,2,1=k    (41) 

 ( ) kpart

r

r
rrrrkpartkfreek tkD ,

4

1
,,

~cossin ηβωϑηηη ++=+= ∑
=

=

, 4,3,2,1=k      (42) 

or in the form 

( ) ( ) tvNtkC k

s

s
sssskpartkfreek 1,11,1

4

1
,, coscossin Ω++=+= ∑

=

=

αωϕξξξ , 4,3,2,1=k   (43) 

 ( ) ( ) tvNtkD k

r

r
rrrrkpartkfreek 1,11,1

4

1
,, cos~~~cossin Ω++=+= ∑

=

=

βωϑηηη , 4,3,2,1=k     (44) 

For the system of double DNA helix chain system with n2  degrees of freedom  
previous two system determinates ( )1,1v∆  and ( )1,1

~~ v∆  are not difficult to express in the similar 
forms. 

Then taking into account that determinates ( )1,1v∆  and ( )1,1
~~ v∆  are analogous as  

determinates, which describe frequency equations of the free vibrations of the double DNA 
helix chain system, which  is possible express in the following forms  ( ) 0=∆ u  and ( ) 0~

=∆ u , 
and that we have roots of these frequency equations in the forms (21)-(22) then we have roots 
of the two system determinates, ( )1,1v∆  and ( )1,1

~~ v∆  in the forms: 

( ) ( ) ( ) ( )κµ
ϕ

ω −+===Ω=
2

sin2 22
1,11,1

s
s

n
s

ss

K
Ju

K
Jv ,  ns ,.....,3,2,1=                      (45) 

( ) ( ) ( ) µ
ϑ

ω +===Ω=
2

sin2~~~~ 22
1,11,1

r
r

n
r

rr

K
Ju

K
Jv  .  nr ,.....,3,2,1=                  (46) 

By use previous characteristic numbers of the previous two system determinates, these 
determinants ( )1,1vk∆  and ( )1,1

~~ vk∆  are possible express in the forms of products: 
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( ) ( )( )n
s

ns

s

n uvv −=∆ ∏
=

=
1,1

1
1,1 2         (47) 

( ) ( )( )n
r

nr

r

n uvv ~~2~~
1,1

1
1,1 −=∆ ∏

=

=

       (48) 

By same way, it is possible to fined expressions for amplitude of the particular 
solutions depending of the number of degree of freedom n2 . For example it is visible without 
calculations that amplitude 1N , 1

~N  and  2N , 2
~N   of the particular solutions of the first and 

second normal coordinates, 1,partξ , 1,partη  and 2,partξ , 2,partη  of the both main chains are in 
the following forms: 

 

( )( )
( )( )n
s

ns

s

n
ns

s

uv

uvh
N

s

−

−

=

∏

∏
=

=

−
−=

=

1,1
1

1
1,1

1

1
1,1,0

1

2
 and    

( )( )
( )( )n
r

nr

r

n
nr

r

uv

uvh
N

r

~~2

~~
~

1,1
1

1
1,1

1

1
1,1,0

1

−

−

=

∏

∏
=

=

−
−=

=  (49) 

( )( )
( )( )n
s

ns

s

n
ns

s

uv

uvh
N

s

−

−

=

∏

∏
=

=

−
−=

=

1,1
1

2

2
1,1

2

1
1,1,0

2

2
 and       

( )( )
( )( )n
r

nr

r

n
nr

r

uv

uvh
N

r

~~2

~~
~

1,1
1

2

2
1,1

1

1
1,1,0

2

−

−

=

∏

∏
=

=

−
−=

=  (50) 

Then general solutions are in the following forms: 

( ) kpart

ns

s
sssskpartkfreek tkC ,

1
,, cossin ξαωϕξξξ ++=+= ∑

=

=

, nk ,.....,3,2,1=   (51) 

 ( ) kpart

nr

r
rrrrkpartkfreek tkD ,

1
,,

~cossin ηβωϑηηη ++=+= ∑
=

=

, nk ,.....,3,2,1=     (52) 

or in the form 

      ( ) ( ) tvNtkC k

ns

s
sssskpartkfreek 1,11,1

1
,, coscossin Ω++=+= ∑

=

=

αωϕξξξ , nk ,.....,3,2,1=        (53) 

     ( ) ( ) tvNtkD k

nr

r
rrrrkpartkfreek 1,11,1

1
,, cos~~~cossin Ω++=+= ∑

=

=

βωϑηηη , nk ,.....,3,2,1=    (54) 

For the case that one frequency external excitation, with reduced amplitude 

K
h ., 2,10

1,2,0
M

=  is with frequency 1,2Ω , applied to the other first material particle n the other of 

the coupled real chains, then two subsystems of the main eigen chains are described by 
following subsystems of differential equations: 

[ ]
⎩
⎨
⎧

≠
=Ω−

=−−++− −+ 10
1cos

122 1,21,2,0
1 k

kth
K kk1kk
J ξκµξξξ&&      (55) 

( )
⎩
⎨
⎧

≠
=Ω

==−++− −+ 10
1cos

122 1,21,2,0
1 k

kth
K kk1kk
J ηµηηη&& ,    (56) 

Particular and general solutions of these previous equations is not difficult to obtain 
analogous by previous procedure and changing corresponding indices of the kinetic parameters 
of the main chains. 
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7. Consideration of the forced vibration regimes of a basic DNA model - linearized 
Kovaleva-Manevich‘s DNA model  

 
From expressions (21) and (22) is possible to consider possibilities of appearance 

resonant regimes in eigen main chains.  

For the case that determinants (21) and (22),    ( ) ( )( ) 02 1,1
1

1,1 =−=∆ ∏
=

=

n
s

ns

s

n uvv   and 

( ) ( )( ) 0~~2~~
1,1

1
1,1 =−=∆ ∏

=

=

n
r

nr

r

n uvv  are equal to zero, then we obtain two sets of external excitation 

frequencies for which in the system appear resonant regime. But taking into account that eigen 
main chains have different sets of eigen circular frequencies as well as different sets of the 
resonant circular frequencies of external excitation, then we can conclude that if in one eigen 
main chain appear resonant regime in other no resonant regime. This is important fact to 
consider in the light of the real double DNA helix chain system.  

Also by use expressions for amplitudes of the particular forced solutions is possible 
appearance of dynamical absorptions at corresponding main coordinate of main eigen chain. To 
obtain external excitation frequencies at which appear dynamical absorption at first or second  
main coordinate of the main chains are equal to zero:      

 

( )( )
( )( )

0
2 1,1

1

1
1,1

1

1
1,1,0

1 =

−

−

=

∏

∏
=

=

−
−=

=

n
s

ns

s

n
ns

s

uv

uvh
N

s

 or   

( )( )
( )( )

0
~~2

~~
~

1,1
1

1
1,1

1

1
1,1,0

1 =

−

−

=

∏

∏
=

=

−
−=

=

n
r

nr

r

n
nr

r

uv

uvh
N

r

 (57) 

( )( )
( )( )

0
2 1,1

1

2

2
1,1

2

1
1,1,0

2 =

−

−

=

∏

∏
=

=

−
−=

=

n
s

ns

s

n
ns

s

uv

uvh
N

s

 or       

( )( )
( )( )

0
~~2

~~
~

1,1
1

2

2
1,1

1

1
1,1,0

2 =

−

−

=

∏

∏
=

=

−
−=

=

n
r

nr

r

n
nr

r

uv

uvh
N

r

   (58) 

and next. 

( )( ) 01
1,1

1

1

=− −
−=

=
∏ n

ns

s
s

uv   or   ( )( ) 0~~ 1
1,1

1

1

=− −
−=

=
∏ n

nr

r
r

uv                   (59) 

( )( ) 02
1,1

2

1

=− −
−=

=
∏ n

ns

s
s

uv   or       ( )( ) 02
1,1

2

1

=− −
−=

=
∏ n

ns

s
s

uv                   (60) 

 From the last conditions (59) and (60), we can conclude that: 
 * Dynamical absorption on the first pair of the main coordinates of the main chains 
appear on the resonate circular  frequencies  of the set of the double DNA helix chain system 
with one less pair of the material particles in comparison with the considered real system. 

* Dynamical absorption on the second pair of the main coordinates of the main chains 
appear on the resonate circular  frequencies  of the set of the double DNA helix chain system 
with two less pairs of the material particles in comparison with considered system. 

This mathematical fact is important to considered in the light of the interruption or 
break  of the double DNA helix chain system into finite parts. 

 
8. The double DNA fractional order chain model on the basis of the linearized Kovaleva-
Manevich‘s DNA models for free and forced vibrations 

 
8.1.  Constitutive relation of the standard light fractional order creep element.  
 

Basic elements of multi mathematical pendulum system or multi coupled chain system are: 
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1* Material particles with mass km , with each particle having one degree of motion 

freedom, defined by following coordinate kϕ , when k  changes by Nk ,....,4,3,2,1= . 
2* Standard light fractional order coupling element of negligible mass in the form of 

axially stressed rod without bending, and which has the ability to resist deformation under static 
and dynamic conditions. Standard light creep constraint element for which the stress-strain 
relation for the restitution force as the function of element elongation is given by fractional 
order derivatives in the form  

( ) ( ) ( )[ ]{ }txctxctP t
α

αD+−= 0      (61) 

where [ ]•α
tD  is operator of the thα  derivative with respect to time t in the following form: 

      ( )[ ] ( ) ( )( ) ( )
( )

( )
τ

τ
τ

α α
α

α

α
α d

t
x

dt
dtx

dt
txdtx

t

t ∫ −−Γ
===

01
1

D    (62) 

where αcc,  are rigidity coefficients–momentary and prolonged one,  and α  a rational number 
between 0 and 1, 10 <<α . 
 

 

1,km  

2,kc  2,1−kc
 

2,1+kc  
 

1,1−km  1,1+km  

1,1−kc  1,1+kc  1,kc  

( )2,11,1 −− kkc  

2,km  2,+km  2,1−km  

( )2,11,1 ++ kkc  ( )2,1,kkc  

 
Figure 3. Double DNK fractional order chain helix in the form of  multipendulum model with free ends 

 

1,km  

2,kc  2,1−kc
 

2,1+kc  
 

1,1−km  1,1+km  

1,1−kc  1,1+kc  1,kc  

( )2,11,1 −− kkc  

2,km  2,+km  2,1−km  

( )2,11,1 ++ kkc  ( )2,1,kkc  

 
Figure 4. Double DNK fractional order chain helix d model in the form of multipendulum system  with 

fixed ends 
 

 
8.2. The double DNA fractional order chain forced vibration model on the basis of the  
linearized Kovaleva-Manevich‘s DNA model 

 
 

For the fractional order forced vibrations of a fractional order double DNA chain 
model on the basis of the linearized Kovaleva-Manevich‘s DNA model, we accept a two chains 
as it is presented in Figure 3 or 4, in the form of the double chain fractional order system 
containing two coupled multi pendulum subsystem, in which corresponding material particles 
of the corresponding multi-pendulum chains are coupled by series of the same standard light 
fractional order elements.  

Let’s suppose that both  coupled chains from system of the fractional order  DNA 
model are excited  by the system of external excitation containing  two series of the one 
frequency excitations in the forms tk.,k 1.1,0 cosΩM  and tk.,k 2.2,0 cosΩM , 

nk ,.....,3,2,1= , where 1,0 .,kM  and    2,0 .,kM   are amplitudes, 1.kΩ  and   2.kΩ   
frequencies  of the external forced couples each applied to one of the mass particles of the  
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double DNA model coupled chains. Then, corresponding system of the nonlinear forced 
vibrations of the double DNA model coupled chains are in the following forms: 

Then, we can use system of the coupled fractional order coupled  differential equations 
extended by terms containing external excitation forces or couples.  Then, we can write 
corresponding system of the fractional order differential coupled equations in the form: 

         
( ) ( )[ ] ( ) ( )[ ]

( ) ( ) ( )

( ) ( )[ ] trrK

rrKrrrK

KK

k.,kt

t

1,1,02,,
2

1

2
,

2,,
2

1

2
,

,1,,,1
,,

,1,,,1
,

,,

cos1
4
1

1
4
1

22

Ω=−−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−

−−−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−−−−+

+−−−−−−−− −+−+

MD

D

k1k

k1k1k

1k1k1k1k
1k

1k1k1k1k
1k

1k1kJ

ϕϕ
ω
ω

ϕϕ
ω
ω

ϕ

ϕϕϕϕϕϕϕϕϕ

σ
βα

αβ

αβ
σαβ

βα
αβ

αβ
αββαααβ

σσ&&

 

         
( ) ( )[ ] ( ) ( )[ ]

( ) ( ) ( )

( ) ( )[ ] trrK

rrKrrrK

KK

k.,kt

t

2,.2,02,,
2

1

2
,

2,,
2

1

2
2,

2,12,2,2,1
,2,

2,12,2,2,1
2,

2,2,

cos1
4
1

1
4
1

22

Ω=−−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+

+−−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−++−+

+−−−−−−−− −+−+

MD

D

k1k

k1kk

kkkk
k

kkkk
k

kkJ

ϕϕ
ω
ω

ϕϕ
ω
ω

ϕ

ϕϕϕϕϕϕϕϕϕ

σ
βα

αβ

αβ
σαβ

βα
αβ

αβ
αββαααβ

σσ&&

        (63) 

Previous system is possible to rewrite in the following form: 

     

( ) ( )[ ] ( ) ( )[ ]

( ) ( ) ( )

( ) ( )[ ] t
K

rr
K

K

rr
K
K

K
rrrK

K
K

K

k
.,k

t

t

1,
,

1,0
2,,

2

1

2

,

,

2,,
2

1

2

,
,

,

,1,,,1
,

,,
,1,,,1,

,

,

cos1
2

1
2

2

2

Ω=−−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−

−−−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−−

−
+

+−−−−+−−−− −+−+

1k
k1k

1k

k1k
1k

1k
1k

1k1k1k1k
1k

1k
1k1k1k1k1k

1k

1kJ

M
D

D

ϕϕ
ω
ω

ϕϕ
ω
ω

ϕ

ϕϕϕϕϕϕϕϕϕ

σ
βα

αβ

αβσαβ

βα
αβ

αβαββαααβ

σσ&&

 

      

( ) ( )[ ] ( ) ( )[ ]

( ) ( ) ( )

( ) ( )[ ] t
K

rr
K

K

rr
K
K

K
rrrK

K
K

K

k
.,k

t

t

2,
2,

2,0
2,,

2

1

2

2,

,

2,,
2

1

2

2,
2,

2,

2,12,2,2,1
2,

,2,
2,12,2,2,12,

2,

2,

cos1
2

1
2

2

2

Ω=−−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+

+−−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−++

−
+

+−−−−−−−− −+−+

k
k1k

k

k1k
k

k
k

kkkk
k

k
kkkkk

k

kJ

M
D

D

ϕϕ
ω
ω

ϕϕ
ω
ω

ϕ

ϕϕϕϕϕϕϕϕϕ

σ
βα

αβ

αβσαβ

βα
αβ

αβαββαααβ

σσ&&

(64) 

 As our intention is to use previous double DNA fractional order chain model for the 
case of the homogeneous system parameters, we take into account that: σ,,1kK = σ,2,kK =K. 

and σαβ ,K = σαβ ,K  and taking into account that, we introduce notation (7) and (8) then the 
precious system of coupled fractional order differential equations is possible write in the 
following form: 

( ) ( )[ ] ( ) ( )[ ]

( ) ( )[ ] t
K

K

k
.,k

t

t

1,
1,0

2,,2,,,

,1,,,1,1,,,1,

cos2

2

Ω=−−−−+

+−−−−−−−− −+−+

M
D

D

k1kk1k1k

1k1k1k1k1k1k1k1k1k
J

ϕϕκκϕϕκµϕ

ϕϕϕϕκϕϕϕϕϕ

σ
σ

σ
σ&&  

( ) ( )[ ] ( ) ( )[ ]

( ) ( )[ ] t
K

K

k
.,k

t

t

2,
2,0

2,,2,,2,

2,12,2,2,12,12,2,2,12,
2,

cos2

2

Ω=−+−++

+−−−−−−−− −+−+

M
D

D

k1kk1kk

kkkkkkkkk
kJ

ϕϕκκϕϕκµϕ

ϕϕϕϕκϕϕϕϕϕ

σ
σ

σ
σ&&              (65) 

where 
K

K σαβ
σκ

,= . 
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By using change of the generalized coordinates 1,kϕ  and 2,kϕ  for k -th bases of both 

chains in the DNA model into following new kξ  and kη  by the following 

dependence: 2,1, kkk ϕϕξ −=    and   2,1, kkk ϕϕη += , previous system of differential 
equations (65) obtains the following form: 

     [ ] [ ]

t
K

t
K

K

k
.,k

k
.,k

tkkktkkk

2,
2,0

1,
1,0

1,111

coscos

222222

Ω−Ω=

=−−+−+−+−+− +−+−

MM

DD kkkk
J ξκκκξµξξξξκξξξξ σ

σ
σ

σ
&&

  (66) 

[ ]

t
K

t
K

K

k
.,k

k
.,k

kkktkkk

2,
2,0

1,
1,0

1,11,1

coscos

2222

Ω+Ω=

=+−+−+−+− +−+−

MM

D kk
J µηηηηκηηηη σ

σ&&
, nk ,.....,3,2,1=   (67) 

First series (66) and second series (67) of the previous system (64)-(65) of the 
fractional order differential equations are decoupled and independent. Then, we can conclude 
that new coordinates kξ  and kη  are main coordinates of fractional order double DNA helix 
chain model system for forced vibration regimes and that we obtain two fictive decoupled eigen 
single fractional order chains of the double DNA fractional order model. This is also one of the 
fundamental conclusion as an important property of the fractional order homogeneous model of 
forced vibrations in a fractional order double DNA homogeneous  helix.   

Systems of fractional order differential equations (66)-(67) contains two separate 
subsystems of fractional order differential equations expressed by coordinates of kξ  and kη  
which are main coordinates of a fractional order double DNA chain helix forced vibration 
model and separate DNA fractional order  model into two independent fractional order chains.  

 
8.3. Analytical solutions of the subsystems of the main chains fractional order differential 
equations for forced regime oscillations 

 
  We solve previous subsystems (66) and (67) through the use of Laplace 
transformations. After conducting Laplace transformations of the previous systems (66) and 
(67) of differential equations with fractional order derivative and having in account that we 
introduced notations ( ){ }tkξL  and ( ){ }tkηL  for Laplace transformations, as well as having in 
mind, that we accepted the hypothesis that the initial conditions of fractional order derivatives 

of the system are given through the use of: ( ) 0
0

1

1

=
=

−

−

t

k

dt
td

σ

σ ξ   and ( ) 0
0

1

1

=
=

−

−

t

k

dt
td

σ

σ η  ,  as well that 

is 

    
2

2,
2

2,0
2

1,
2

1,0
2,

2,0
1,

1,0 coscos
k

.,k

k

.,k
k

.,k
k

.,k

p
p

Kp
p

K
t

K
t

K Ω+Ω+
=

⎭
⎬
⎫

⎩
⎨
⎧

ΩΩ
MMMM

L mm   (68) 

where  k0ξ  and  k0ξ&   as well as k0η and  k0η&  are initial angular positions and angular 
velocities defined by initial conditions of system material particles dynamics in the chains at 
initial moment, we can write the following system of the equations with unknown Laplace 
transforms: 

   
{ } { } { } [ ]{ } { } { } [ ]{ }

2
2,

22,,02
1,

21,,0

1,111 222222

k
k

k
k

tkkktkkk

p
ph

p
ph

K

Ω+
−

Ω+
+=

=−−+−+−+−+−
⎭
⎬
⎫

⎩
⎨
⎧

+−+− kkkk
J

ξκκξκξµξξξκξξξξ σ
σ

σ
σ DLLLDLLLLL &&

(69)  
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{ } { } { } { } [ ]{ } { }

2
2,

22,,02
1,

21,,0

1,11,1 2222

k
k

k
k

kkktkkk

p
ph

p
ph

K

Ω+
+

Ω+
+=

=+−+−+−+− +−+− kk
J ηµηηηκηηηη σ

σ LDLLLLL &&
,

nk ,.....,3,2,1=                (79) 
Previous system is possible to rewrite in the following form: 

        
( )

( ) ( ){ } { } ( ){ } { } [ ]
( )

( )( ) ( )( )σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

κκ

κ
ξξξξξξ

κ

κκµ

pp
ph

pp
ph

p
p

K
tt

p

pp
K

k
k

k
k

kk
kkkk

+Ω+
−

+Ω+
+

+
+

+
=−+−

+

⎥⎦
⎤

⎢⎣
⎡ +−+

+−

11

1
22

1

1222

2
2,

22,,02
1,

21,,0

00
11

2
&J

J

LLLL     (80) 

( ) { } { } { } { } [ ]
( )

( )( ) ( )( )σ
σ

σ
σ

σ
σ

σ
σ

κκ

κ
ηη

ηηηη
κ

µ

pp
ph

pp
ph

p
p

Kp
K

p

k
k

k
k

kk
kkk

+Ω+
+

+Ω+
+

+
+

+
=−+−

+

⎟
⎠
⎞

⎜
⎝
⎛ +

+−

11

1
22

1

22

2
2,

22,,02
1,

21,,0

00
1,1

2
&J

J

k LLLL                   (81) 

Now, we have two separate, uncoupled non homogeneous subsystems of the algebraic 
equations in the following forms: 

     

{ } ( ) ( ){ } { } [ ]
[ ] ( )( )

( )( )σ
σ

σ
σ

σ
σ

κ

κκω
ξξξξξ

pp
ph

pp
ph

p
ptv

k
k

k
k

kk
kkk

+Ω+
−

−
+Ω+

+
+
+

=−++− +−

1

11
2

2
2,

22,,0

2
1,

21,,02
0

00
11

&
LLL

        (82) 

{ } ( ) { } { } [ ]
( ) ( )( )

( )( )σ
σ

σ
σ

σ
σ

κ

κκω
ηη

ηηη

pp
ph

pp
ph

p
pu

k
k

k
k

kk
kkk

+Ω+
+

+
+Ω+

+
+
+

=−++− +−

1

11
2

2
2,

22,,0

2
1,

21,,02
0

00
1,1

&
LLL

  (83) 

or in the following forms: 
{ } ( ) ( ){ } { } ( ) ( )2,01,0

2
2,

2
1,0011 ,,,,,,2 kkkkpkkkhkkkk hhphphtv ΩΩ+=−++− +− ξξ ξξξξξ &LLL   (84) 

{ } ( ) { } { } ( ) ( )2,01,0
2

2,
2

1,001,1 ,,,,,,2 kkkkpkkkhkkkk hhphphu ΩΩ+=−++− +− ηη ηηηηη LLL       (85) 
where  

 [ ]
[ ] κ

κω
µω

σ
σ

2
1

2
2
0

2
0

2

−
+
+

=
p

pv ,  [ ]
[ ]σ

σκω
µω

p
pu

+
+

=
1

2
2
0

2
0

2
,  

J2
2
0

K
=ω                    (86) 

( ) [ ]
[ ]σ

σ
ξ κω

ξξξξ
p

pph kk
kkhk

+
+

=
1

,, 2
0

00
00

&
& ,  ( ) [ ]

( )σ
σ

η κω
ηη

ηη
p

pph kk
kkhk

+
+

=
1

,, 2
0

00
00

&
                          (87) 

( ) ( )( ) ( )( )σ
σ

σ
σ

ξ κκ pp
ph

pp
phhhph

k
k

k
kkkkkpk

+Ω+
−

+Ω+
=ΩΩ

11
,,,, 2

2,
22,,02

1,
21,,02,01,0

2
2,

2
1,        (88) 

( ) ( )( ) ( )( )σ
σ

σ
σ

ξ κκ pp
ph

pp
phhhph

k
k

k
kkkkkpk

+Ω+
+

+Ω+
=ΩΩ

11
,,,, 2

2,
22,,02

1,
21,,02,01,0

2
2,

2
1,           (89) 

Both subsystems are same form and it is necessary to solve one of the subsystems and 
by use analogy is easy to solve other of the subsystem equations. For that reason we can use 
method proposed in the papers [14] amd [20]. Determinate of the previous subsystem (84) as 
well as (85) are in following form (21) as well as (22) by similar way as for the subsystems of 
algebra equations in paragraph 5.. 

Determinates of the previous algebra subsystem (84) as well as (85) are in the same 

form as it is presented in (21)-(22). 
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Next consideration we focus to  the case: 

{ } ( ) ( ){ } { } ( ) ( )
⎪⎩

⎪
⎨
⎧

≠
=ΩΩ+

=−++− +− 10
1,,,,,,,2 2,011,01

2
2,1

2
1,1101011

11 k
khhphphtv ph

kkk
ξξ ξξξξξ

&
LLL           (90) 

{ } ( ) { } { } ( ) ( )
⎪⎩

⎪
⎨
⎧

≠
=ΩΩ+

=−++− +− 10
1,,,,,,2 2,011,01

2
2,1

2
1,1101011

1,1 k
khhphphu ph

kkk
ηη ηηηηη

&
LLL           (91) 

By introduce the notation ( ) ( )2,01,0
2

2,1
2

1,101011 ,,,,,, kkh hhphph ΩΩ+ ξξ ξξ &  and 

( ) ( )2,011,01
2

2,1
2

1,1101011 ,,,,,, hhphph ph ΩΩ+ ηη ηη  defined by (86)-(87), for the 

determinants ( )( )ξhvk ,~
∆ , we can write similar expressions as defined by (21)-(22) changing 

expressions  ( )0101,, ξξξ
&ph  by expressions ( ) ( )2,01,0

2
2,1

2
1,101011 ,,,,,, kkh hhphph ΩΩ+ ξξ ξξ &  as well 

as by ( ) ( )2,011,01
2

2,1
2

1,1101011 ,,,,,, hhphph ph ΩΩ+ ηη ηη . 
For solving the system of the algebraic no homogeneous equations (90) or (91) with 

respect to unknown Lapalce transforms ( ){ }tkξL  or ( ){ }tkηL   of the time function main 

coordinate  ( )tkξ  and ( )tkη - unknown normal chain coordinates of the system main chains 
for forced vibrations, we can use Cramer approach by similar way as in the paragraph 5. 
  

8.4. Forced eigen modes of the subsystems of the main chains of a fractional order double 
DNA helix chain system forced vibrations 
 

In this part we start by two subsystems of fractional order differential equations (66) 
and (67) expressed by eigen normal chains coordinates 2,1, kkk ϕϕξ −=    and  

2,1, kkk ϕϕη += , and we can rewrite these subsystems in the following form: 

    [ ] ( )[ ]
thth

K
kkkk

kkkt

2.2,,01.1,,0

1,11

coscos

12122

Ω−Ω=

=−−+−+−−++− +−−+ ξξκξκξκµξξξ σ
σDkk1kk

J &&
,      nk ,.....,3,2,1=

                                           (92) 
( ) [ ]

thth
K

kkkk

kkkt

2.2,,01.1,,0

1,11

coscos

2122

Ω+Ω=

=−+−+−++− +−−+ ηηηκηµηηη σ
σ Dkk1kk

J
&& , nk ,.....,3,2,1=     

                                                   (93) 
Without loosing generality, we focused our next interest to consider two subsystems of 

the fractional order differential equations in the following form: 

[ ] ( )[ ]
⎩
⎨
⎧

≠
=Ω

=−−+−+−−++− +−−+ 10
1cos

12122 1.11,1,0
1,11 k

kth
K kkkt ξξκξκξκµξξξ σ

σDkk1kk
J &&

 nk ,.....,3,2,1=                              (94) 

( ) [ ]
⎩
⎨
⎧

≠
=Ω

=−+−+−++− +−−+ 10
1cos

2122 1.11,1,0
1,11 k

kth
K kkkt ηηηκηµηηη σ

σ Dkk1kk
J

&&

 nk ,.....,3,2,1=                                 (95) 
Previous two subsystems are for the case of fractional order  forced vibrations of a 

double DNA helix chain system excited by one single frequency external couple 
t., 1,11,10 cosΩM , with amplitude 1,10 .,M  and frequency 1,1Ω , applied to the first  mass particle 

in the first chain of a double DNA helix chain system.  
First series (94) and second series (95) of the previous system (94-(95) of the 

fractional order differential equations for forced vibrations are decoupled and independent. 
Then, we can conclude that new coordinates kξ  and kη  are main coordinates of fractional 
order double DNA helix chain model system for forced vibration regimes and that we obtain 
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two fictive decoupled eigen single fractional order chains of the double DNA fractional order 
model. This is also one of the fundamental conclusion as an important property of the fractional 
order homogeneous model of forced vibrations in a fractional order  double DNA homogeneous  
helix.   

Systems of the fractional order differential equations (94)-(95) contains two separate 
subsystems of fractional order differential equations expressed by coordinates of kξ  and kη  
which are main coordinates of a fractional order double DNA chain helix forced vibration 
model and separate DNA fractional order chain  model into two independent fractional order 
main chains.  

For first main chain of the double DNA chain helix  (94), the eigen amplitudes for free 
vibrations are in the form ( )

ss
s

k kCA ϕsin=  and generalized coordinates ( )tkξ  of the first 
main chain for forced vibrations is possible to express by set of this eigen main chain main 
coordinates ξζ s  for free vibrations in the following form: 

( ) ∑
=

=
n

s
ssk kt

1

sin ϕζξ ξ                                                                            (96) 

nk ,....,3,2,1=  
as well as for other main chain of the double DNA chain helix  (95) generalized coordinates 

( )tkη  of the second main chain for forced vibrations is possible to express by set of this eigen 
main chain main coordinates ηζ s  for free vibrations in the following form: 

( ) ∑
=

=
n

s
ssk kt

1

sin ϕζη η                                                         (97) 

Normal coordinates ξζ s  or normal modes of the first main chain for forced vibrations 
is possible to express in the similar form as for free vibrations, but introducing suppositions that 
unknown amplitudes  sC  and phase sα  depend of initial conditions are not constant, but 
functions of time, ( )tCs  and phase ( )tsα , and for fractional order system main coordinate are in 
the form 

( ) ( ) ( )( )tttCt sss αζ ξξ +Ω= cos , ns ,....,3,2,1=                                   (98) 

with known frequencies (see Refs. [25] by Hedrih and Hedrih , [29] by  Rašković P. 
Danilo) and unknown time functions - amplitudes ( )tCs  and phase ( )tsα  depending of time 
and initial conditions.  

Then, we introduce expressions (96) and (97) and their corresponding second and 
fractional order derivative into subsystem of the fractional order differential equations (94) and 
(95), we obtain the following systems:  

          
( ) [ ] ( )

( ) ( ) ( )
⎩
⎨
⎧

≠
=Ω

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−−+−−+

++−−++−−

∑∑∑

∑∑∑∑

===

====

10
1cos

1sinsin121sin

1sinsin121sinsin2

1.11,1,0

111

1111

k
kth

kkk

kkkk
K

n

s
ss

n

s
ss

n

s
sst

n

s
ss

n

s
ss

n

s
ss

n

s
ss

ϕζϕζκϕζκ

ϕζϕζκµϕζϕζ

ξξξ
σ

σ

ξξξξ

D

&&J

 nk ,.....,3,2,1=                                      (99) 

        

( ) [ ] ( )

( ) ( )

⎩
⎨
⎧

≠
=Ω

=

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−+−−+

++−++−−

∑∑∑

∑∑∑∑

===

====

10
1cos

1sinsin21sin

1sinsin121sinsin2

1.11,1,0

111

1111

k
kth

kkk

kkkk
K

n

s
ss

n

s
ss

n

s
sst

n

s
ss

n

s
ss

n

s
ss

n

s
ss

ϕζϕζϕζκ

ϕζϕζµϕζϕζ

ηηη
σ

σ

ηηηη

D

&&J

      (100) 
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 nk ,.....,3,2,1=                         
After made a group sublimations of the some terms in previous equations (99), we 

obtain the following subsystem: 

      
[ ] ( ) [ ]

⎩
⎨
⎧

≠
=Ω

=

=⎟
⎠
⎞

⎜
⎝
⎛ −−+−−++∑

=

10
1cos

sincos12
2

cos1
2

22

1.11,1,0

1

k
kth

kKK
K

n

s
sstsss ϕζϕκκϕκµζ ξ

σ
σξ D

JJ
J &&

       (101) 

nk ,.....,3,2,1=  
Then taking into account denotations      (102) 

⎟
⎠
⎞

⎜
⎝
⎛ −+= κµϕκ σξ 2

sin2
2

2 s
s

K
J

, ns ,....,3,2,1=   

⎟
⎠
⎞

⎜
⎝
⎛ −+= κµϕω ξ 2

sin2
2

22 s
s

K
J

, ns ,....,3,2,1=                  (103) 

⎟
⎠
⎞

⎜
⎝
⎛ −== κϕκκω σσξσξ 2

sin2
2

22 s
ss

KK
JJ

, ns ,....,3,2,1=                    (104) 

previous subsystem of fractional order differential equation (101) is possible to rewrite in the 
following form: 

[ ]
⎩
⎨
⎧

≠
=Ω

=⎟
⎠
⎞

⎜
⎝
⎛ ++∑

=
10

1cos
sin

2
2 1.11,1,0

1

2

k
kth

kK
K

n

s
sstssss ϕζκζωζ ξ

σ
σξξξξ D

J
J && ,

nk ,.....,3,2,1=                        (105) 
Taking into account that it is possible to develop (to express) right hand side into series 

according to  skϕsin  in the following series:  

( )

⎪
⎩

⎪
⎨

⎧

≠

=Ω=
⎩
⎨
⎧

≠
=Ω ∑

=
10

1cossin2

10
1cos

1
1.11,1,01.11,1,0

k

ktkh
Kk

kth
n

s
ss ϕJ

               (106) 

where  

 ( )

( ) 10

1

sinsin

sin

2

1,1,0

1 1

1
1,1,0

1,1,0

≠=

==

== =

=

∑∑

∑

kh

k

kk

kh
Kh

s

sr

n

s

n

r
rs

n

s
s

s

ϕϕ

ϕ

J                  (107) 

equations (101) is possible to rewrite in the following form: 

            [ ] ( )( ) 0sincos2

1
1.11,1,0

22 =Ω−++∑
=

n

s
ssstssss kth

K
ϕζωζωζ ξ

σ
σξξξξ D&&J , nk ,.....,3,2,1=   (108) 

Then, taking into account that  0sin ≠skϕ in general case, from (108) is possible to 
obtain the following subsystem of fractional order differential equations: 

[ ] ( ) th sstssss 1.11,1,0
22 cosΩ=++ ξ

σ
σξξξξ ζωζωζ D&& , ns ,....,3,2,1=                 (109) 

where 2
ξω s  are square of eigen circular frequencies determined by expression (103) and 2

σξω s  
corresponding eigen characteristic  numbers expressing fractional order subsystem properties, 
determined by expression (104).  

In analogous way, taking into account denotation  

⎟
⎠
⎞

⎜
⎝
⎛ −= µωκκ ησση

222 ss K
J  , ns ,....,3,2,1=      (110) 

 ⎟
⎠
⎞

⎜
⎝
⎛ += µϕω η 2

sin2
2

22 s
s

K
J

, ns ,....,3,2,1=      (111) 
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2
sin

2
4 22 s

s
K ϕκω σση J

= , ns ,....,3,2,1=      (112) 

and by use (100), is possible to obtain the second subsystem of fractional order differential 
equations in the following form: 

[ ] ( ) th sstssss 1.11,1,0
22 cosΩ=++ η

σ
σηηξη ζωζωζ D&& , ns ,....,3,2,1=                 (113) 

where 2
ηωs  square of eigen circular frequencies determined by expression (111) and 2

σηωs  
corresponding eigen characteristic numbers expressing fractional order subsystem properties, 
determined by expression (112).  

Then we have system of fractional order differential equations (109)-(1113) describing 
system of n2  fractional order oscillators, containing two subsets of the main fractional order 
forced oscillators, each described by n  fractional order differential equations. Each of these n2  
fractional order differential equations, contain only one main eigen coordinate ξζ s  or ηζ s   of 
the system. 

The system (109)-(1113) represent the main fractional order forced oscillators along  
independent system main coordinates  ξζ s  or ηζ s  , ns ,....,3,2,1=  each with one circular 
frequency of external excitation and one eigen circular frequency  and one eigen characteristic 
number from one of the two sets of: ξωs  or ηωs  eigen circular frequencies determined by 

expression (103) or (111)  and 2
σξω s  or  2

σηωs  corresponding eigen characteristic  numbers 
expressing fractional order subsystem properties, determined by expression (104) or (112). 
  All of fractional order differential equations of the system (109)-(1113) are same type 
and is possible to solve by same way by use Laplace transform ( ){ }tsξζL  and ( ){ }tsηζL . 
Applying Laplace transform to the system (109)-(1113) of the fractional order differential 
equations, we obtain the following system of the equations: 
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and after introducing into system (118)-(119) for Laplace transform ( ){ }tsξζL  and ( ){ }tsηζL  of 

system double DNA helix chain eigen main coordinates ξζ s  and ηζ s   we obtain: 
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Then, for obtaining system double DNA helix chain eigen main coordinates ( )tsξζ  
and ( )tsηζ   is necessary to applied inverse of Laplace transform to the expressions (121)-(122). 

Then, we can write the following: 
 

( ) ( ) ( )ttt partsss ,hom, ξξξ ζζζ +=       (123) 
 and  

( ) ( ) ( )ttt partsss ,hom, ηηη ζζζ +=         (124) 
where  

a* ( )ts hom,ξζ  and ( )ts hom,ηζ   are terms correspond to solutions of the homogeneous 
fractional order differential equations and solutions are in the following forms (see Appendix 
(A.1)-(A.3) and (B.1)-(B.16)): 
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 b* ( )tpars ,ξζ  and ( )tpars ,ηζ   are terms correspond to particular solutions of 
the no homogeneous fractional order differential equations system (121)-(122) and solutions 
must to obtain as a inverse transform of the following expressions: 
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or in developed form 
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9. Concluding remarks  
 

At the end, we can conclude that new coordinates of kξ  and kη  composed to 

generalized coordinates by the way 2,1, kkk ϕϕξ −=  and 2,1, kkk ϕϕη += . These coordinates  
are main coordinates of the main eigen chains of a double DNA helix chain system. Also we can 
conclude that it is possible to obtain two fictive decoupled and separated eigen single chains of 
the double DNA chain helix liner model as well as fractional order model. This is important 
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fundamental conclusion as an important property of the linear model of vibrations in a double 
DNA helix.  

Considered as a linear or fractional order mechanical system, DNA molecule as a 
double helix chain system has its eigen circular frequencies and that is its characteristic. 
Mathematically it is possible to decuple it into two chains with their eigen circular frequencies 
which are different. This may correspond to different chemical structure (the order of base 
pairs) of the complementary chains of DNA. We are free to propose that each specific set of 
base pair order has its eigen circular frequencies and it changes when DNA chains are coupled 
in the system of double helix. DNA as a double helix in a living cell can be considered as 
nonlinear system but under certain condition its behavior can be describe by linear dynamics.  

By use superposition’s of these solutions for the case that external excitations are with 
same amplitudes and frequencies from system differential equations, we can see that for this 
case external one frequency excitations in one eigen main chain appear pure free vibrations 
with eigen subset of circular frequencies of its free vibrations, and in other appear forced 
vibrations. This conclusion is possible to generalize for same multi-frequency external 
excitations applied in which of the pair material particle in both chains. This conclusion is 
possible to extend to the fractional order double helix DNA chain system forced vibrations. 

This solutions may correspond with process of binding the enzyme to the specific 
part of the DNA molecule. Enzyme has a role of inducer of forced vibrations. In the 
transcription process only one chain is used as a template for transcription other chain is 
control. The part of DNA chain witch is template has to make more movements than the 
other chain.  

Dynamical absorption on the first pair of the main coordinates of the main chains 
appear on the resonate circular  frequencies  of the set of the double DNA helix chain system 
with one less pair of the material particles in comparison with the considered real system.  

Resonant state that appear only in one main chain may be important for selecting 
the specific sequence for transcription and we suggest that every sequence of DNA that 
encodes the specific protein has its own resonate circular frequencies different from the 
sequences that encode other proteins.  

Dynamical absorption on the second pair of the main coordinates of the main chains 
appear on the resonate circular  frequencies  of the set of the double DNA helix chain system 
with two less pairs of the material particles in comparison with considered system. 

This mathematical fact is important to consider in the light of the interruption or break 
of the double DNA helix chain system on the specific places where the transcription process 
starts and ends. 
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APPENDIX 

NOMENCLATURE  

 DNA – Deoxyribonucleic acid (DNA) 

1,kϕ [ rad ] - generalized coordinate – angles of the k -th base of the first chain of the double 
DNA chain helix;  

2,kϕ [ rad ] - generalized coordinate – angles of the k -th base of the second chain of the 
double DNA chain helix;  

1kJ ,  [ 2kgm ]- is the axial moment of mass inertia of the k -th base of the first chain of the 
double DNA chain helix; 

2,kJ [ 2kgm ]- is the axial moment of mass inertia of the k -th base of the second chain of the 
double DNA chain helix;  

1,kϕ& [rads-1] - angular velocity of the k -th base of the first chain of the he double DNA chain 
helix;   

2
, ααrm=1kJ , 2

2, ββ rm=1kJ  [ 2kgm ] -  the base pair the axial moments of mass inertia ; 

αm  [ kg ]- the value of the base mass  

αr [ m ] - the length 
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2
, ααrm=1kJ  [ 2kgm ] - the corresponding axial moment of mass inertia for all possible base 

pair authors accepted as in the  Reference  [17].  

ikK , , 2,1=i  [KJmol-1]- parameters characterize the energy of interaction of the k -th base 

with the ( 1+k )-th one along  
the i -th chain 2,1=i .  

1]-KJmol[106 3
, ×== KK ik - for the calculation that the most appropriate value is close / 

 

kξ ,  kη  [ rad ], nk ,.....,3,2,1=  - main orthogonal coordinates of the eigen main chains of 
the double DNA chain helix; 

2,1, kkk ϕϕξ −=     and  2,1, kkk ϕϕη += , nk ,.....,3,2,1=  - functional dependence between 

main orthogonal coordinates kξ and  kη  of the eigen main chains and generalized coordinates 

1,kϕ  and 2,kϕ  [ rad ] of the double DNA chain helix; 

2αβω [ 1sec− ] - are frequencies of rotational motions of the bases,  in similar and opposite 

directions accordingly, of the k -th base of the first chain of the  
double DNA chain helix; 

1αβω  [ 1sec− ] - are frequencies of rotational motions of the bases, in similar and opposite 

directions accordingly, of the k -th base of the first chain of the  
double DNA chain helix; 

KKK kk == 2,1,  - for the case of homogeneous double DNA chain helix; 

JJJ 2k1 == ,,k   [ 2kgm ] - for the case of homogeneous double DNA chain helix; 

kA - amplitude 
  u=JK-1ω2- eigen characteristic number of the homogeneous double DNA chain helix; 
  k= αβK 2K-1{1- 

2αβω 1αβω -1) ( )2βα rr − - parameter of the homogeneous double DNA 
chain helix; 
µ= ( )βαααβ rrrK − K-1 - parameter of the homogeneous double DNA chain helix; 

2
ξωs [ 2sec− ], ns ...,4,3,2,1= - set of the n  eigen circular frequencies of the first eigen main 

chain of the homogeneous double DNA chain helix; 
2
ηωs [ 2sec− ], ns ...,4,3,2,1=  - set of the n  eigen circular frequencies of the first eigen main 

chain of the homogeneous double DNA chain helix; 
2
ξωs  and 2

ηωs , ns ...,4,3,2,1=  -two subsets of the set of the homogeneous double DNA chain 
helix; 

 
 

APPENDIX  A*  

Expansion of the Laplace transform into series. 
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APPENDIX  B* 

  Solution of a fractional order differential equation of a fractional order creep 
oscillator with single degree of freedom 

The fractional order differential equations obtained and considered cases of eigen 
fractional order partial oscillators of the hybrid fractional order multichain system are in 
mathematical analogy same fractional order differential equation with corresponding unknown 
time-functions. We can use notation ( )tT  and  all previous derived fractional order differential 
equations of eigen fractional order partial oscillators with one degree pf freedom, correspond to 
the hybrid fractional order multi-chain  system dynamics with sixth degree of freedom, we can 
rewrite it  in the following form: 
 ( ) ( ) ( ) ( ) 02

0
2 =+± tTtTtT ωω α
α

&&                        (B.1) 
This fractional order differential equation (B.1) on unknown time-function ( )tT ,  can 

be solved applying Laplace transforms (see Refs. [3] by Bačlić and Atanacković (2000), [23] by 
Hedrih (Stevanović)  and Filipovski (2002)). Upon that fact Laplace transform of solution is in 
form:  
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where  ( )[ ][ ] ( ) ( )[ ]tTLL ptTt R=αD  is Laplace transform of a fractional derivative ( )
α

α

dt
tTd for 10 ≤≤α . 

For creep rheological material those Laplace transforms the form: 
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where the initial value are: 
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so, in that case Laplace transform of time-function is given by following expression:  
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For boundary cases, when material parameters α  take following values: 0=α  i 1=α  we have 
the two special simple cases, whose corresponding fractional-differential equations and 
solutions are known. In these cases fractional-differential equations are:  
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where  ( )( ) ( )tTtT =0 , and  
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where ( )( ) ( )tTtT &=1 . 
The solutions to equations (B.6) and (B.7) are: 
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for 0=α . 
2* a. 
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for  1=α  and for  2
10 2

1
αωω > . (for soft creep) or for strong creep: 

2* b.   
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for  1=α  and for 2
10 2

1
αωω < . 

For critical case: 
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Fractional-differential equation (B.1) for the general case, when α  is real number from interval 
10 <<α   can be solved by using Laplace's transformation. By using that is:  
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and by introducing  for initial conditions of fractional derivatives in the form (B.3), and after 
taking Laplace's transform of the equation (B.1), we obtain a corresponding equation. By 
analyzing previous Laplace transform (B.12) of solution we can conclude that we can consider 
two cases. 
For the case when 02

0 ≠ω  , the Laplace transform solution can be developed into series by 
following way: 
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In writing (B.15) it is assumed that expansion leads to convergent series. The inverse Laplace 
transform of previous Laplace transform of solution (B.15) in term-by-term steps is based on 
known theorem, and yield the following solution of differential equation (B.1) of time function 
in the following form of time series: 
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