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Abstract: The generation of heat, at the frictional contact of two bodies, is the most common structural-
thermal process in contact engineering. As such, it has been analyzed from many different aspects and on
different levels. The modern-day analysis of the frictional heat generation is usually numerical with the
significant simplifications and the most common simplification in such of analysis is neglecting the
surface roughness as a parameter which is slowing down the calculation process. The paper is presenting
a numerical model(s) for estimation of the frictional heat but for the bodies having surface roughness
included. Besides analyzing the rough-rough contact, the comparative analysis of the heat generation on
the contact of the rough-flat and flat-flat bodies is done, as well. The overcome of the long-lasting
calculating time is done using the small-model-shortly-loaded concept with the usage of adapted thermal
boundary conditions.

Keywords: Contact, Friction, Heat Generation, Surface Roughness

1. Introduction

The frictional heat generation is a physical phenomenon always present when the contact of two bodies in
the relative movement exists. While moving and contacting at the same time, from the aspect of the frictional
heat generation, the bodies interact both on micro and macro levels resulting in micro and macro mechanical,
frictional and thermal processes as the primary, while metallurgical, lightning, vibration, and other processes
appear as the secondary [1]. Both the primary and the secondary processes involve in the energy
transformation into heat. The bodies in contact carry a large amount of mechanical energy and a much
smaller part of the other energy types [2]. Therefore, the phenomenon of the ,,frictional heat generation” is a
complex mechanism of transformation of the mechanical energy into the heat at the contact interface of the
bodies. The transformation is purely due to the friction and it is followed by the mechanical deformation and
stressing of the bodies under the thermal (boundary) conditions. The mechanism of mechanical energy
transformation into the frictional heat is, as previously mentioned, the micro and macro based and as such it
can be analyzed on the micro or macro level. The engineering praxis usually prefers macro level analysis [1].

All frictional processes at the contact of two moving bodies always appear on the real contact area regardless
of nominal/prescribed contact, initial and boundary conditions [1]. The prescribed (nominal) contact area is,
in most of the contact cases, significantly larger than the real contact area what results in large deforming,
infliction of larger stresses and fast changing of the contact configuration [3]. However, most of the materials
used in the engineering have significant elasticity reserves and inert isotropic hardening which compensate
by contact-induced impacts on bodies. The metallic bodies are capable to resist such hard stressing, at least
for a short time period that is long enough to get the real contact area larger without significant destruction of
bodies in contact. The stationary frictional contact condition is achieved when the real contact area reaches
its quasi maximal value (which is almost always smaller than the nominal) [1, 3, 4].

The frictional heat generation is appearing in the real contact area due to the solid friction and the loads
delivered to the contact [1]. There were serious discussions in the 1990s about the mechanisms and
interfaces where the heat generation appears [1, 5, 6]. Since solid friction appears on outside interfaces of the
bodies in contacts, a certain number of researches point out that the frictional heat is generated at the
surfaces where the friction appears (when heat generation is considered on the macro level) [6]. In macro
models, the main factors that influence heat generation are friction coefficient, frictional stresses,
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temperature, sliding velocity and real contact area [2, 3]. Almost all of the macro-based models point out that
95%-100% of the mechanical energy dissipated as frictional heat becomes thermal energy which is
responsible for the increase of the contact body’s temperatures [1, 2]. The interface friction heat is delivered
to the bodies in contact in a certain ratio — when the bodies are made of the same material and have
approximately the same size, this ratio is 50% to both [7, 8]. If contact bodies differ in a metallurgical,
chemical or dimensional manner, the ratio of the heat distribution changes from 50-50 to some other [§8]. In
such a situation, the ratio is obtained experimentally [8-10]. The micro-based models assume that the
frictional heat is generated on the top few atomic-layers below the contact surface but not deeper than Sum
in the bodies [5]. The micro-based frictional heat generation models consider the same mechanism for the
heat generation as the macro-based models and many of them include plastic deformations of the contact
surface of the contact bodies [5]. The macro-based models usually do not recognize plastic deformation and
plasticity based heat generation as the frictional heat [5, 8].

The process of frictional heat generation is strongly self-regulatory [1, 2, 11]. Regardless of the initial
contact pressure, temperature, sliding velocity and friction coefficient, the frictional generated heat is
increasing the temperature of the bodies, at least in the contact area. When heating is intense, the increase of
the body’s temperature results in softening of the material, what furthermore induces a certain drop of the
friction coefficient [11]. If heating of the bodies continues the material becomes even softer and the intensive
drop of the friction coefficient appears. In such a circumstance, the amount of mechanical energy being
transformed into the frictional heat significantly drops, as well, and the bodies in contact start to locally cool
down [1, 11]. The material cooling induces the material hardening and the friction coefficient increase, what
again triggers the body’s temperature increase and the loop continues from the start [11]. Therefore, the
frictional heat cannot melt the bodies in contact (on the macro-level) — several experimental investigations
show that maximal temperature achieved by frictional heating can reach 75%-85% of the material’s melting
temperature [1, 11]. If wear and abrasion of the contact are not significant, the friction coefficient and
contact pressure are merely depending on the temperature of the contact bodies, loads and topology [12].

The estimation of the amount of frictional generated heat can be done analytically, numerically or
experimentally [1, 12]. The analytical approach is mostly used for the contact problems with the simple
contact topology and the constant loading conditions. The experimental approach is based on the
measuring/estimation of mechanical energy present in the contact area that is multiplied with the correlation
factor — heat efficiency transformation factor. Usually, the correlation factor varies from 0.5 to 1.0 and it
cannot be defined universally [1, 11-13]. The numerical approach is mostly used in the present days and it
relies on analytical method an experimental data for more precise results. The numerical estimation of the
heat generated due the friction requires fully coupled structural and thermal conditions, what cannot be done
without discretization of the space and time and approximate solution of the frictional, deformational, stress
and thermal processes. The discretization of the bodies demands to neglect many structural-topological
features of the bodies in contact [10, 14, 15] while discretization of the time is influenced by the minimal
dimensions of the discretized bodies and convergence requirement of the approximate solving method [13].

The easiest path for the numerical estimation of the amount of frictionally generated heat is using some
commercial software that has capabilities to estimate complex mutual structural-thermal relationships of the
bodies in contact. However, the main issues with such an approach are hardware limitations of the
calculating machines — the relatively small numerical models and relatively short termed contact processes
require significant computational resources and long-lasting processing time. Many of the numerical
frictional heat generation models neglect the contact surface roughness, hardness and time/temperature
dependent properties of the bodies or contact [16-27]. This paper is dealing with the contact frictional
heating of the bodies having surface roughness involved in the numerical model ran by Ansys Workbench
coupled transient structural-thermal solver.

2. The Problem Formulation and the Model

The frictional heat generation has been considered for the contact of 2 bodies in 3 cases: in the 1% case is
considered the contact of 2 ideally flat bodies (Figure 1, a), the 2" case is dealing with the contact of a flat
fixated body and a rough moving body (Figure 1, b) and the 3™ case analyses the contact of 2 rough contact
bodies (Figure 1, c).

The surface roughness of the contact surfaces on the bodies is modeled in a manner to be comparable to the
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ISO 4287: Geometrical Product Specifications (GPS) — Surface texture: Profile method — Terms, definitions,
and surface texture parameters [28]. The flat contact surfaces have no surface roughens and they satisfy the
NO surface quality (R,=0 pm) while the rough contact surfaces comply with the N6 surface quality
(R:~=0.8 pm).

The basic geometrical models used for the contact/friction heat generation analysis are rather small (the
moving body is 0.1 mm x 0.1 mm x 0.05mm and the fixed body is 0.22 mm x 0.12 mm x 0.02 mm) and the
highest peaks/deepest valleys of the surface roughness are 5 um. Entering into the micro-unit dimensions in
the frictional heat generation numerical analysis demands a great number of small discretized elements, what
furthermore requires a significant number of structural and field equations to be solved, using a small time
step (app. 10%s to 10*s) to achieve convergence. This requires significant computational time and
hardware resources and these are the main reasons why the dimensions of the bodies need to be small.

Figure 1. The models (in mm) used for the frictional heat generation for a) flat-flat contact, b) rough-flat contact, c)
rough-rough contact, d) enlarged model for thermal analysis

On the other hand, setting up the conventional thermal boundary conditions (convection, conduction), the
body heating (heat transport within the body) and the heat transfer from a body to a body (conduction,
radiation) on such a small body cannot be modeled in a fully realistic manner — there are no (or: there are a
few specific) engineering parts so tiny but suffering heavy frictional-thermal loadings like the planned
models are about to. The model has to be significantly larger. Fortunately, pure thermal modeling is less
sensitive to the time step size and size of the discretized elements than combined (coupled) structural-
thermal modeling, and this gives a possibility to create another, larger model of the bodies in contact (having
dimensions of max. 2 mm x 2 mm x 2 mm, shown in Figure 2, d), which embeds the small model inside
itself. In such of a configuration, there is no physical separation between the bodies (the structure is
monolith), but there is a geometrical boundary between the small and enlarged model where the adapted
thermal boundary conditions for the small model can be defined. This is modeled using the thermal flux
passing thru the geometrical boundary and the procedure will be given in the following chapters.

Initially, the bodies are positioned one above the other at the distance of 0.01 mm from the nominal contact
surfaces of the bodies. The nominal contact surfaces are the surfaces planned to get into contact with NO
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roughness for the flat bodies and ,,0-surfaces” for the N6 roughness surfaces [28]. The nominal surface has a
nominal contact area of 4,=0.1 mm-0.1 mm=0.01 mm?. During the first 0.01 s the moving body is coming
down to the fixed body, traveling 0.01 mm. During this time, the bodies get in contact. Afterward, the
moving body travels in the direction along the longer edge of the fixed body passing 0.1 mm in 0.1 s, staying
in contact with the fixed body. At the end of the cycle, the moving body is traveling upwards for 0.01 s
traveling 0.01 mm, leaving the contact with the fixed body. In total, the complete cycle lasts for 0.12 s.

2. The Numerical Model and Simulation

The problem is simulated and analyzed using The Ansys Workbench as a coupled structural-thermal analysis
combined with the transient thermal analysis (Figure 2). The simulation for all of the 3 cases is done in 3
steps. Step 1 is a coupled structural-thermal numerical analysis of the small (base) model without the thermal
boundary conditions and without the conduction between the bodies. The main goal is to estimate the
amount of generated frictional heat delivered to the bodies in contact (as the heat flux in W/m?). The heat
flux from Step 1 is used as an input value in the pure transient thermal analysis done in Step 2. In this step,
the used model is enlarged and it is used for estimation of the heat flux transportation thru the base model's
boundary surfaces and temperature distribution thru the bodies. The estimated flux on the boundaries of the
small body is used for estimation of the adapted convection coefficients (Figure 3) that are necessary for
more precise estimation of the heat generated due to the friction on contact in Step 3. Step 3 is structurally
the same as Step 1 but it uses adapted convection coefficients on boundary surfaces, conduction between the
bodies in contact and the temperature dependent coefficient of friction (Figure 3). The generated heat on the
contact and the temperature of the bodies are the main results from the step 3.

Figure 2. The schematic of the Ansys Workbench numerical simulation with some details about the numerical models

The numerical model in Steps 1/3 (coupled structural thermal analysis) is based on the base model and it is
discretized with 17938 linear SOLID 5 elements [29]. The numerical model in Step 2 (transient thermal
analysis) is based on the enlarged model and it is discretized with 113541 SOLID 90 elements [30].

The heat generation due the friction is modeled under assumptions that the bodies in contact are ideally
elastic, isotropic, the complete mechanical energy on the contact is transformed into the heat and the heat is
equally distributed to both bodies in contact. The friction coefficient is assumed to be temperature dependent
only (7). The temperature 7 is an average temperature of the contact surface. Both bodies are made of
structural steel (Figure 3). The radiation, surface hardness, wear, adhesion, fatigue, creep and surface
hardening are not considered in the numerical simulation.

499



Prilog 18

The frictional heat flux generated on the contact (the rate of frictional dissipation) at the node i at the time
moment of ¢ g,(¢), is estimated as (Equation 1):

q,(t)=FHTG-1,(t)-v,(t) (D

The frictional dissipated energy converted into heat is considered to be 100 % as a general assumption. It is
defined as a 15" real constant in Ansys MAPDL with a value of FHTG=1.00.

The equivalent frictional stress at the node i at the time moment of ¢ 1,(¢) is estimated using Coulomb’s law
of friction and it is a function of the coefficient of friction and the contact pressure in the node i (Equation 2):

Tf(t):f['u(T)’pz’(t)] @)

The contact pressure at the node 7 at the time moment of ¢ p«¢) is determined by the software’s solver and it
is influenced by the contact conditions and the loading of the bodies. The sliding rate at the node 7 at the time
moment of ¢ vi(¢) is estimated by the software’s solver as a contact-dependent variable.

The distribution of frictional heat to the bodies in contact is defined with the weight factor for the
distribution of heat between the bodies in contact and it is assumed that each body gets 50% of the generated
heat. It is defined as an 18" real constant in Ansys MAPDL with a value of FWGT=0.50.

The conduction between the elements in the contact is defined over the heat flux gc.nq(f) delivered from the
hotter element (temperature 7h) to the colder element (temperature Tcorr) (Equation 3):

qcond (t):TCC(Y;z T;old) (3)

The thermal contact conductance coefficient (TCC) is a material and contact property indicating thermal
conductivity-heat conduction between bodies in contact. It is a phenomenon defined by many factors where
the main factors are contact pressure, contact area, surface deformation, metallurgical parameters and the
cleanness of the surfaces in contact. The problem of TCC estimation is too complex to be analyzed here — it
is usually estimated experimentally but there are many works trying to find an analytical solution [22].
Assuming minor heating during the contact, for simplification, the TCC is taken to be constant
TCC=50 kW-m2-°C"!. The convection at the free-air surfaces is considered to be constant /=10 W-m2-°C ",
For the surfaces of the base model which are the geometrical boundaries in the enlarged model (and free-air
in the base model), during step 2 the heat flux traveling thru the surface has been estimated. For example, for
the surface at the moving body in —x-direction, the equilibrium equations are (Equations 4 and 5):

ot

for the base model q_, (¢)=—h,, (¢)-[ T, T (yz.t)] 4)
for the enlarged model ¢__ (1) = k% (5)

The adapted coefficient of convection in —x-direction /.q.(7) is (Equation 6;
()= (6)

T, -T(yz.0)

It is much more appropriate having adapted coefficient as a function of the average temperature at the
surface and the prescribed heat flux thru the surface (Equation 7):

g X(T)=Tq—1TO %)

ayz

Finally, establishing the connection between the total generated frictional heat, generated at the contact
surface (Equation 8):

a.(1)=2.4,(1) ®)
i=1
and the average heat flux traveling thru the boundary surfaces of the base model within the enlarged model

(9x> 9y, 92) the adapted coefficients of the convection for the free surfaces at the base model used in Step 3
are defined as (Equations 9 to 11):
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qx( V’yz)
s (4,T.0) = -
wa(4,,751) T - (yz,t—Af) .
q (qv’xz)
hady(qv’T’t)z_T _y (xz t—Al‘) "
, X
hy.(q,.T.t)~— 9.(4,,v) (1D

T, —T(xy,t—At)

The solver estimates total generated frictional heat, uses average temperatures (from the previous time step)
of the observed surface for which adapted coefficients are estimated for then uses the equations to estimate
the adapted coefficients for every time step. Figure 3 shows the most important details for understanding the
problem. The environment temperature is 7o= 7..=22°C.

Figure 3. The base model showing base dimensions, prescribed boundary conditions, contact status, and some material
properties of the bodies in step 3 on the rough-rough model setup

3. The Simulation Results

The contact of the flat-flat bodies initiates simultaneously at all contact points at the time of 0.01 s — when
moving body stops translating downwards. The real contact area between the bodies (4,) is equal to the
nominal contact area (the ratio is 4,/4,=100%). For the rough-flat and rough-rough bodies, the initial contact
happens before 0.01 s — the moving body is translating downwards but the highest peaks on the
moving/fixated body get in contact with the opposite side element. The real contact area, in both cases,
enlarges until the translation of the moving body stops. However, at that moment the real contact area is
smaller than the nominal (the ratio is 4,/4, =65%-70%). When translation — sliding of the moving body over
the fixated body starts (at 0.01 s), the ratio 4,/4, drops to app 43%-45% for the rough-flat body contact while
ratio A./A, oscillates between 30%-50% for the rough-rough contact. For the flat-flat contact, the ratio
remains 100% (Figure 4). When moving body start translating away from the fixed body (after 0.11 s), the
contact area between the bodies fast changes from its previous value to significantly smaller values and
therefore the ratio A4,/4, fast reaches the values of 0 for all body configurations. The areas in contact (sliding
and sticking) are the locations where the frictional heat generates and conduction between the moving and
fixated body appears (Figures 5 to 7). The remaining area in the contact region with near-to contact and far-
away from contact statuses have convective boundary conditions. Step 1 had a goal to estimate the amount of
heat generated in contact (Figure 8). The exchange of the heat between moving and fixated body was
disabled — there was no conduction, convection or radiation between the bodies in contact. The heat
exchange on the other boundary surfaces of the bodies was disabled as well. The result of such heat
transportation restrictions are the unrealistic high temperatures of max. 35 °C (rough-flat) / 66 °C (rough-
rough) at the moving body.
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The frictional generated heat from Step 1 (Figure 8) is used as an input heat flux for Step 2 where the
enlarged model is used. The main results from Step 2 are the functional dependencies between the frictional
generated heat, heat flux leaving the base model and the average temperature (Figures 9 to 11). Step 3 uses
an algorithm for estimation of adapted convection coefficients based on the frictional heat generated on the
contact and temperature of the considered element. The friction coefficient on the contact in Steps 2 and 3 is
considered to be temperature dependent (Figure 12).
The complete model analyzed in Step 3 gave all results: the force reaction F. (Figure 13), the generated
frictional heat (Figures 14 to 17), temperature (Figures 18 and 20) and contact pressure (Figure 21).
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Figure 18. The maximal values of temperatures Figure 19. The maximal values of temperatures

Figure 20. The extreme value of the temperature at the  Figure 21. The extreme value of the contact pressure at the
rough-rough contact rough-rough contact

3. Discussion and Conclusions

The frictional contact and frictional heat generation that involves surface roughness is a challenging task to
deal with due to several reasons. The surface roughness in metallic real bodies is dimensioned in micro-
length units while the real bodies are mostly in mili-length units. Therefore, the discretized model of such
bodies must have a large number of small elements that will give a satisfactory representation of the surface
roughness and processes that appear on contact. Finally, the numerical stability of the transient structural
simulation, when small elements are applied, can be achieved only if the small time step is applied. It is
obvious that a powerful calculating system is needed, working for a long time period.

The reasonable solution is to use small bodies (small model), consider it as a large body and surround it with
the boundary conditions that represent a large body in a process lasting for a short time period (short time
process). Such an approach delivers good frictional, contact and thermal results but some of the structural
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results might be ambiguous (for example stresses) due to the compromised stiffness of the bodies.

Using the small model approach, the frictional contact is analyzed for 3 cases: flat surface to flat surface,
rough surface to flat surface and rough surface to rough surface. The bodies have been initiated to touch over
the prescribed surfaces until the nominal surfaces come to touch. For such a condition, flat-flat contact
initiates near to 0 (the numerical tolerance level of 10°® units) resistance force, no frictional heat flux, no
contact pressure and no heating of the bodies. The frictional heat generation and the temperature increase are
possible only if the flat bodies get more ,,pressed” one to another. Anyhow, the real contact area of the
bodies is equal to the nominal contact area what is not the case for the real bodies having surface roughness.

The moving body from the rough-flat contact initiates contact with the fixed body at 0.0048 s what is much
earlier than the nominal contact surfaces touch each other for the flat-flat contact (at 0.01 s) At that moment,
the highest peak of the surface roughness on moving body touches the flat surface of the fixed (flat) body
and the heat transportation between the bodies begins — the heat generation and distribution to both bodies,
as well as the conduction from the hotter body to the colder body over the estimated real contact area. The
conduction is modeled as constant, regardless of time, contact area, contact pressure or temperature, what it
certainly is not in reality. It is assumed to be constant value to relax the numerical calculation and under the
assumption that the complete loading cycle lasts very short. This should be investigated in further researches.
The real contact area increases up to maximal 71% of the nominal contact area at the end of the downward
translation of the moving body. When the moving body starts to translate over the fixating body, the real
contact area varies from 40% to 50% of the nominal contact area. This decrease of the real contact area is
induced by the change of the contact status from sticking to sliding: the elements in contact start to relatively
move one compared to another what decreases active contact between them. The elements in sliding
condition generate an average heat flux delivered to each body from 0.24 MW/m? to 0.28 MW/m?. The
maximal heat flux delivered to elements at the highest peak of the surface roughness is 6.84 MW/m? while
the element that is not in the contact, located in the deepest valley of the surface roughness, delivers to the
surrounding maximally 0.007 MW/m? over convection. These short bursts of energy in contact areas do not
significantly change the temperature of bodies in contact — the maximal temperature is 22.64 °C, in the zone
of the highest peak on the surface roughness. The average temperature of the bodies varies from the 22.044
°C to 22.048 °C. The moving body from the rough-rough contact, initiates contact even earlier, at 0.0032 s,
when one of the surface roughness peaks at the moving body initiates contact with some surface roughness
peak at the fixating body. From that point forward, the real contact area increases to maximal 65% of the
nominal contact area. When the moving body starts translation along the fixated body, the real contact area
drops down and oscillates from 30% to 50% of the nominal value. This variation is the product of initiation
of new contact points as well as the breakage of the previously initiated contacts. The average generated flux
delivered to each body is between 0.20 MW/m? to 0.35 MW/m?. The maximal generated heat flux delivered
to the bodies is 16.8 MW/m? and it appeared at the contact of two high peaks. The maximal heat flux
delivered to the surrounding is 0.07 MW/m? at the location on top of a small valley on the fixated body.
Slightly larger average heat flux generated on the rough-rough contact than heat flux generated on the rough-
flat contact results in a slightly higher average temperature of the bodies — from 22.04 °C to 22.068 °C. The
maximal temperature for the rough-rough contact is higher than for the rough-flat contact — at the location
where the maximal heat flux has been generated, the maximal temperature has reached 23.327 °C.

Clearly, the rough-rough contact initiates higher peaks in the heat generation due to the higher contact
pressures between the two high roughness surface peaks. In simulated case, the highest contact pressure for
the rough-rough contact is 141.170 GPa while expected nominal contact pressure is for the axial force of 50
N equal to the 5 GPa. The larger model and the longer frictional contact between the rough-rough bodies
would result in more locations where extreme values of the frictional heat would appear. This will lead to
more intensive heating than for the flat-flat contact or the rough-flat contact.

The more detailed investigation of the surface roughness influence to the frictional heat generation in
numerical research has to be done. It is necessary to estimate the cost-benefit: comparing the calculation time
and the hardware resources engaged for the more precise results. At the present state of calculation
technique, it seems to be ineffective using surface roughness in simulating frictional heat generation — the
simulation would last too long and the precision of the results would not be dramatically better than results
gathered in simulations without surface roughness involved. The future models should involve wear, non-
linear deforming, plasticity, but that would slow down the simulations even more.
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The coupled structural-thermal analysis is done using SOLID 5 linear hexagonal elements with the limited
coupling abilities [29]. The SOLID 5 element is a ,legacy element” of the Ansys software from the end of
the 20" century and Ansys Workbench recommends the usage of the current, fully-coupling, newer and more
advanced SOLID 226 element [31]. However, SOLID 226 elements have shown instability concerning the
temperature estimation while frictional heating. There are many published examples where the frictional
heating appears but the bodies show temperature decrease (cooling below the ambient temperature) [23-27].
The same situation has appeared during testing of the presented numerical models with SOLID 226
elements. Therefore, authors have decided to use proven, limited but functional, non-state-of-the art
technology. The authors have several times addressed this issue to the Ansys Customer Service but no
response has happened until the finalization of this research.

Nomenclature

Latin symbols T, —Average temperature of the hotter
A —Nominal contact area, in [mm?]. contact surface, in [°C].
A “Real contact area, in [mm>]. T, —Average temper.ature of the colder
contact surface, in [°C].
F, —Force reaction in z dir., in [N]. TCC —Thermal  contact  conductance
3 : -2.0
FHTG —Fraction of frictional dissipated coefficient, in [W-m™-°C].
energy converted into heat. ¢ —Specific heat capacity, in [Jkg'°C™].
FWGT ~Weight factor for the distribution of k —Thermal conductivity, in [Wm'°C™].
heat between bodies. ) —Travel distance, in [mm].
P, ( t) —Contact pressure at the node i at the noh Thermal  convection  coefficient

time moment of ¢, in [MPa]. surface to air, in [W-m 2-°C]

QA .. ol
Vi (t ) Sliding rate at the node J, in [m-s™]. h,. (t) —Adapted thermal con. coefficient for
R, ~Tensile yield strength, in [MPa]. x surface, in [W-m™.°C].
) ) ) B, (;) —Adapted thermal convection
. —Ultimate yield strength, in [MPa]. coefficient for y dir., in [W-m2°C].
E —Young’s modulus of elasticity, in h,. (t) —Adapted thermal convection
[MPal]. coefficient for z dir., in [W-m2.°C].
R, —Arithmetic average of the roughness h,. (%’Tst) —Adapted thermal conv. coefficient
profile, in [pum]. for x dir., in [W-m2-°C].
I —Node counter. hady(qv, T,t) —Adapted thermal conv. coefficient
{ _Time, in [s]. surface for y v, in [W-m2-°C].
T ~Temperature, in [°C]. h,. (qv,T, t) —Adapted therr.nal. conv. czooefﬁment
: N surface for z dir., in [W-m*-°C].
To, T. ~Environment temperature, in [*C]. ( ) Frictional heat flux generated on the
Ay B ux
T,. —Average temperature at the yz contact, in [W-m™].
boundary surface, in [°C]. Gona (1)~ —Frictional heat flux delivered by
T(yz,t)  —Temperature at the yz boundary conduction on contact, in [W-m™].
surface, in [°C]. q,(1) —Total generated frictional heat at the
T( Xyt — At) —Temperature at the xy surface, at the contact surface, in [W-m™2].
previous time step, in [°C]. q. (t) —Frictional heat flux passing thru —x

T( xz,t— At) —Temperature at the xz surface, at the surface, in [W-m2].

previous time step, in [°C]. q.(q,,yz) -Frictional heat flux passing thru x

T( yz,t— At) —Temperature at the yz surface, at the surface, in [W-m™].
previous time step, in [°C].
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q,(q,,xz) —Frictional heat flux passing thru y ,U(T) —Temperature dependent coefficient
surface, in [W-m™2]. of friction, in [-].

qz(qv, xy) —Frictional heat flux passing thru z Ti(t) —Equivalent frictional stress at the
surface, in [W-m™2]. node i at the time ¢, in [MPa].

Greek symbols At —Time step, in [s].

a —Coefficient of linear thermal

expansion, in [°C'].
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