

UNIVERSITY OF NIŠ FACULTY OF MECHANICAL ENGINEERING Department for Production, IT and Management

34th INTERNATIONAL CONFERENCE ON PRODUCTION ENGINEERING

PROCEEDINGS

Sponsor General

Ministry of Education and Science, Republic of Serbia

September 28-30 2011, Niš Serbia

PROCEEDINGS OF THE 34th INTERNATIONAL CONFERENCE ON PRODUCTION ENGINEERING NIŠ, 2011.

Izdavač: Univerzitet u Nišu, Mašinski

fakultet u Nišu

Aleksandra Medvedeva br 14

18000 Niš Srbija Publisher: UNIVERSITY OF NIŠ,

FACULTY OF MECHANICAL

ENGINEERING IN NIŠ

Aleksandra Medvedeva br 14

18000 Niš Serbia

Za izdavača: For publisher: Prof.dr Vlastimir NIKOLIĆ, dekan fakulteta

Glavni i odgovorni urednik:

Editor:

Prof.dr Miroslav TRAJANOVIĆ

Tehnička obrada: Technical tretmant: Milan Zdravković Nikola Vitković Marko Veselinović Dalibor Stevanović

20.09.2011. godine

Rukopis predat u štampu: Manuscript submitted for publication: Izdanje:

Septembar 20.2011 prvo 1st 150

Tiraž: Circulation:

Printing:

Štampa: Printed by: UNIGRAF – X – COPY 18000 Niš, Vojvode Putnika

ISBN: 978 - 86 - 6055 - 019 - 6

Izdavanje zbornika radova, organizovanje I održavanje 34 Međunarodne konferencije proizvodnog mašinstva Srbije pomogao je pokrovitelj **Ministarstvo prosvete i nauke Republike Srbije**

Finansing of the Proceedings was sponsored by the Ministry of Education and Science of the Republic of Serbia

29. - 30. September 2011, Niš, Serbia University of Niš, Faculty of Mechanical Engineering

ORGANIZING INSTITUTIONS:

Association of production engineering scientific research institutions of Serbia

- Unverzitet u Nišu, Mašinski fakultet u Nišu Katedra za proizvodno informacione tehnologije i menadţ ment
- Mašinski fakultet, Beograd
- Mašinski fakultet, Kragujevac
- Fakultet tehniĉkih nauka Departman za proizvodno mašinstvo, Novi Sad
- Fakultet tehniĉkih nauka Departman za industrijsko inţ enerstvo i menadţ ment, Novi Sad
- Tehniĉki fakultet, Ĉaĉak
- Mašinski fakultet, Kraljevo
- Fakultet tehniĉkih nauka, Kosovska Mitrovica
- LOLA Institut, Beograd

ORGANIZERS:

UNIVERZITET U NIŠU MAŠINSKI FAKULTET U NIŠU

Katedra za proizvodno informacione tehnologije i menadţ ment Aleksandra Medvedeva br 14 18000 Niš

Tel. +381 (18) 500 – 669; Fax. +381 (18) 588 – 244

Web: http://www.masfak.ni.ac.rs email: spms@masfak.ni.ac.rs

CONFERENCE VENUE:

Niš

Hotel Tami residence 18000 Niš, Durmitorska – prilaz bb

Tel. +381 (18) 505 – 800, 282 – 222

Web: http://www.tamiresidence.com email: info@tamiresidence.com

29. - 30. September 2011, Niš, Serbia University of Niš, Faculty of Mechanical Engineering

SCIENTIFIC COMMITTEE

- Prof. dr Velibor MARINKOVIĆ, MF, Niš, SRB, president
- Prof. dr Sergey ALEKSANDROV, RA of S, Moscow, RUS
- Prof. dr Miroslav BADIDA, ME, Košice, SK
- Prof. dr Nikolai BOBYR, KPI, Kiev, UA
- Prof. dr Pavao BOJANIĆ, MF, Beograd, SRB
- Prof. dr Alan BRAMLEY, University Bath, UK
- Prof. dr Aleksandar BUKVIĆ, MF, I. Sarajevo, RS, BIH
- Prof. dr Miodrag BULATOVIĆ, MF, Podgorica, MNE
- Prof. dr Ilija ĆOSIĆ, FTN, N. Sad, SR
- 10. Prof. dr Cristian DOICIN, TU, Bucharest, RO
- 11. Prof. dr Dragan DOMAZET, FIT, Beograd, SRB
- 12. Prof. dr Ljubodrag ĐORĐEVIĆ, VTMŠ, Trstenik, SRB
- 13. Prof. dr Kornel EHMANN, Northwestern U., Chic., USA
- 14. Prof. dr Miloš GLAVONJIĆ, MF, Beograd, SRB
- 15. Dr Peter HARTLEY, University Birmingham, UK
- 16. Prof. dr Janko HODOLIĈ, FTN, N. Sad, SRB
- 17. Prof. dr Vid JOVIŠEVIĆ, MF, Banja Luka, RS, BIH
- 18. Prof. dr Milan JURKOVIĆ, MF, Bihać, BIH
- 19. Prof. dr Klaus KABITZSCH, TU, Dresden, D
- 20. Prof. dr Damir KAKAŠ, FTN, N. Sad, SRB
- 21. Prof. dr Mochael KHEIFETZ, PSU, Novopolotsk, BY
- 22. Prof. dr Sergey KLIMENKO, ISM, Kiev, UA
- 23. Prof. dr Pavel KOVAĈ, FTN, N. Sad, SRB
- 24. Prof. dr Karl KUZMAN, FS, Ljubljana, SLO
- 25. Dr Vladimir KVRGIĆ, LOLA Institut, Beograd, SRB
- 26. Prof. dr Miodrag LAZIĆ, MF, Kragujevac, SRB

- 27. Prof. dr Ljubomir LUKIĆ, MF, Kraljevo, SRB
- 28. Prof. dr Vidosav MAJSTOROVIĆ, MF, Beodrad, SRB
- 29. Prof. dr Miodrag MANIĆ, MF, Niš, SRB
- 30. Prof. dr Ostoja MILETIĆ, MF, Banja Luka, RS, BIH
- 31. Prof. dr Dragan MILUTINOVIĆ, MF, Beograd, SRB
- 32. Prof. dr Bogdan NEDIĆ, MF, Kragujevac, SRB
- 33. Prof. dr Mircea NICOARA, FM, Temisoara, RO
- 34. Prof. dr Herbert OSANNA, TU, Wien, A
- 35. Prof. dr Zoran PANDILOV, MF, Skopje, MK
- 36. Prof. dr Miroslav PILIPOVIĆ, MF, Beograd, SRB
- 37. Prof. dr Miroslav PLANĈAK, FTN, N. Sad, SRB
- 38. Prof. dr Snet ana RADONJIĆ, TF, Ĉaĉak, SRB 39. Prof. dr Bela SABO, FTN, N. Sad, SRB
- 40. Prof. dr Mirko SOKOVIĆ, FS, Ljubljana, SLO
- 41. Prof. dr Bogdan SOVILJ, FTN, N. Sad, SRB
- 42. Prof. dr Victor STARKOV, Stankin, Moscow, RUS
- 43. Prof. dr Milentije STEFANOVIĆ, MF, Kragujevac, SRB
- 44. Prof. dr Ljubodrag TANOVIĆ, MF, Beograd, SRB
- 45. Prof. dr Tomislav TODIĆ, FTN, K. Mitrovica, SRB
- 46. Prof. dr Velimir TODIĆ, FTN, N. Sad, SRB
- 47. Prof. dr Dragiša VILOTIĆ, FTN, N. Sad, SRB
- 48. Prof. dr Frank VOLLERTSEN, BIAS, Bremen, D
- 49. Prof. dr Radomir VUKASOJEVIĆ, MF, Podgorica, MNE
- 50. Prof. dr Miomir VUKIĆEVIĆ, MF, Kraljevo, SRB
- 51. Prof. dr Milan ZELJKOVIĆ, FTN, N. Sad, SRB

Members of the Honorary Committee

Dipl. ing. Mile BENEDETIĆ, LOLA Institut, Beograd

- Prof. dr Branislav DEVEDŢIĆ, MF, Kragujevac
- Prof. dr Ratko GATALO, FTN, Novi Sad
- Prof. dr Branko IVKOVIĆ, Mašinski fakultet, Kragujevac
- Prof. dr Ratomir JEĈMENICA, Tehniĉki fakultet, Ĉaĉak
- Prof. dr Milenko JOVIĈIĆ, Mašinski fakultet, Beograd
- Prof. dr Milisav KALAJDŢIĆ, Mašinski fakultet, Beograd Prof. dr Vuĉko MEĈANIN, Mašinski fakultet, Kraljevo
- Prof. dr Vladimir MILAĈIĆ, Mašinski fakultet, Beograd
- 10. Prof. dr Dragoje MILIKIĆ, FTN, Novi Sad
- 11. Prof. dr Mihajlo MILOJEVIĆ, Mašinski fakultet, Kraljevo
- 12. Prof. dr Predrag POPOVIĆ, Mašinski fakultet, Niš
- 13. Prof. dr Jot ef REKECKI, FTN, Novi Sad
- 14. Prof. dr Sava SEKULIĆ, FTN, Novi Sad
- 15. Prof. dr Joko STANIĆ, Mašinski fakultet, Beograd
- 16. Prof. dr Vojislav STOILJKOVIĆ, Mašinski fakultet, Niš
- 17. Prof. dr Sreten UROŠEVIĆ, Tehniĉki fakultet, Ĉaĉak
- 18. Prof. dr Svetislav ZARIĆ, Mašinski fakultet, Beograd 19. Prof. dr Dragutin ZELENOVIĆ, FTN, Novi Sad

ORGANISATIONAL COMMITTEE

- Dr Miroslav Trajanović, president
- Dr Miodrag Stojiljković 2.
- Dr Dragan Temeljkovski
- Dr Miroslav Radovanović
- Dr PeĊa Milosavljević
- Dr Predrag Janković
- Dr Vladislav Blagojević 7
- Mr Nikola Korunović Mr Milan Zdravković
- 10. Nikola Vitković
- 11. Dr Dragoljub Lazarević
- 12. Dr Bojan Ranĉić
- 13. Dr Goran Radenković
- Dr Saša RanČelović
- 15. Dr Dragan Mišić
- 16. Mr Miloš Stojković
- 17. Mr Jelena Milovanović
- 18 Dušan Petković
- 19. Milan Trifunović

34th INTERNATIONAL CONFERENCE ON PRODUCTION ENGINEERING 29. - 30. September 2011, Niš, Serbia

29. - 30. September 2011, Niš, Serbia University of Niš, Faculty of Mechanical Engineering

ORGANIZER OF CONFERENCE ON PRODUCTION ENGINEERING OF YUGOSLAVIA / SERBIA AND MONTENEGRO / SERBIA 1965-2011

I	Beograd	Mašinski fakultet	1965.
II	Zagreb	Fakultet za strojarstvo i brodogradnju	1966.
III	Ljubljana	Fakultet za strojnistvo	1967.
IV	Sarajevo	Mašinski fakultet	1968.
V	Kragujevac	Mašinski fakultet	1969.
VI	Opatija	Fakultet za strojarstvo i brodogradnju Zagreb	1970.
VII	Novi Sad	Mašinski fakultet	1971.
VIII	Ljubljana	Fakultet za strojnistvo	1973.
IX	Niš	Masinski fakultet	1974.
X	Beograd	Mašinski fakultet	1975.
XI	Ohrid	Mašinski fakultet Skoplje	1977.
XII	Maribor	Visoka tehniĉka skola	1978.
XIII	Banja Luka	Mašinski fakultet	1979.
XIV	Ĉacak	Pedagosko-tehniĉki fakultet	1980.
XV	Novi Sad	Fakultet tehniĉkih nauka	1981.
XVI	Mostar	Mašinski fakultet	1982.
XVII	Budva	Mašinski fakultet Podgorica	1983.
XVIII	Niš	Mašinski fakultet	1984.
XIX	Kragujevac	Mašinski fakultet	1985.
XX	Beograd	Mašinski fakultet	1986.
XXI	Opatija	Tehniĉki fakultet Rijeka	1987.
XXII	Ohrid	Mašinski fakultet Skoplje	1989.
XXIII	Zagreb	(nije odrzano)	1991.
XXIV	Novi Sad	Fakultet tehniĉkih nauka	1992.
XXV	Beograd	Mašinski fakultet	1994.
XXVI	Podgorica	Mašinski fakultet	1996.
XXVII	Niš	Mašinski fakultet	1998.
XXVIII	Kraljevo	Mašinski fakultet	2000.
XXIX	Beograd	LOLA Institut	2002.
XXX	Ĉacak	Tehniĉki fakultet i Viša tehniĉka škola	2005.
XXXI	Kragujevac	Mašinski fakultet	2006.
XXXII	Novi Sad	Fakultet tehniĉkih nauka	2008.
XXXIII	Beograd	Mašinski fakultet	2009.
XXXIV	Niš	Univerzitet u Nišu, Mašinski fakultet u Nišu	2011.

FOREWORD

The first Scientific conference on production engineering of ex Yugoslavia was held in Belgrade, in 1965, initiated by Prof. Vladimir Šolaja. This also marked the forming of the Association of scientific and research institutions in production engineering, which included faculties of mechanical engineering and research institutes of almost all major cities of the former federation. The Association of scientific and research institutions in production engineering was reinstated, under new circumstances, in 1994. In 2009, the Executive Board of the Association delegated the organization of 34rd Conference to the University of Niš, Faculty of Mechanical Engineering in Niš.

The organizer of this Conference, the Department for Production, IT and Management of the Faculty of Mechanical Engineering, University of Niš, has ambitiously approached the task of organizing this Conference, setting two primary goals: (1) to point to the current state of research in the area of production engineering in the region of SEE as well as rest of Europe, (2) to use presence of highly competent professionals to initiate discussions on boosting of production in SEE.

In order to meet these goals, the organizing committee has made efforts to attract production engineering community to present the results of their research. A total of 180 papers were registered. All papers submitted for presentation passed through a double blind review process and were evaluated by two reviewers. After peer review process 119 papers were accepted for presentation. Those authors whose papers were chosen for presentation at the conference submitted manuscripts to be published in these Proceedings. The authors are from 16 European countries: Austria, Bosnia and Herzegovina, France, Germany, Montenegro, Slovenia, Slovakia, Czech, Croatia, Poland, Romania, Belarus, Macedonia, Greece, United Kingdom and Serbia.

Also, four invited lectures will be given by distinguished professors. One of these lectures is an introduction to a roundtable on the theme: "Boosting production in SEE".

The Ministry for Education and Science of Serbia, together with donors from industry, have financially supported the organization of this Conference, for which the organizer wishes to express gratitude on this occasion.

On behalf of the organizing committee, I wish to express my gratitude to all domestic and foreign contributors, as well as the editing board for the performed reviews.

Niš September 20, 2011

President of the organizing committee

Prof. Dr. Miroslav Trajanović

President of the Executive Board of the Association

Prof. Dr. Velibor Marinković

29. - 30. September 2011, Niš, Serbia University of Niš, Faculty of Mechanical Engineering

Contents

PLENARY PRESENTATIONS:	
Invited lets to res	
Herve Panetto SYSTEM ENGINEERING FOR SYSTEMS INTEROPERABILITY IN MANUFACTURING ENVIRONMENT	3
Vidosav Majstorović QUALITY MANAGEMENT – STATE OF THE ART AND FUTURE DEVELOPMENT.	5
Dorian Marjanović DESIGN RESEARCH – THE MOMENTUM AND EXPECTATIONS	13
Petar Petrović, Vladimir Milaĉić NATIONAL TECHNOLOGY PLATFORMS OF SERBIA	15
SECTION A:	
Machining technologies	
Uros Zuperl, Franc Cus NEURAL NETWORK ALGORITHM FOR ON-LINE TOOL BREAKAGE DETECTION	29
Milan Milutinović, Ljubodrag Tanović THE EFFECTS OF TOOL FLANK WEAR ON TOOL LIFE	33
Obrad Spaić, Zdravko Krivokapić, Rade Ivanković MATHEMATICAL MODELLING OF CUTTING FORCE AS THE MOST RELIABLE INFORMATION BEARER ON CUTTING TOOLS WEARING PHENOMENON.	37
Ljubodrag Tanović, Pavao Bojanić, Radovan Puzović, Mihajlo Popović, Goran Mladenović ANALYSIS OF STONE MICRO-CUTTING MECHANISM USING THE EXAMPLE OF GRANITE AND MARBLE GRINDING.	41
Marko Kovaĉević, Miloš Madić, Velibor Marinković SOFTWARE PROTOTYPE FOR ANALYZING MANUFACTURING PROCESS MODELS.	45
Diana Baila CONTRIBUTIONS TO MANAGEMENT SWARF HIGH-SPEED MACHINE TOOLS	49

Dijana Nadarević, Mirko Soković STEEL VALVE PLATE GRINDING	53
Milenko Sekulić, Miodrag Hadţistević, Zoran Jurković, Pavel Kovaĉ, Marin Gostimirović APPLICATION OF TAGUCHI METHOD IN THE OPTIMIZATION OF FACE MILLING PARAMETERS.	57
Jozef Peterka, Martin Kováĉ, Marek Zvonĉan INFLUENCE OF TOOL BALANCING ON MACHINED SURFACE QUALITY IN HIGH SPEED MACHINING.	61
Aco Antić, Milan Zeljković, Aleksandar Ţivković FEM MODELING AND EXPERIMENTAL VERIFICATION OF CUTTING TOOL VIBRATIONS.	65
Miloš Madić, Goran Radenković, Miroslav Radovanović PREDICTION OF MECHANICAL PROPERTIES AND MACHINABILITY OF CAST COPPER ALLOYS USING ANN APPROACH	69
SECTION B:	
Surface engineering and nanotechnologies	
Ilare BORDEASU, Mircea Octavian POPOVICIU, Ion MITELEA, Alin Dan JURCHELA RESEARCH ON CAVITATION EROSION BEHAVIOR OF STAINLESS STEELS WITH CONSTANT CHROMIUM AND VARIABLE NICKEL CONTENT	75
Damir Kakaš, Branko Škorić, Aleksandar Miletić, Pal Terek, Lazar Kovaĉević, Marko Vilotić INFLUENCE OF SUBSTRATE ROUGHNESS ON ADHESION STRENGTH OF	
HARD TIN FILMS.	79
	7983
HARD TiN FILMS Damir Kakaš, Branko Škorić, Pal Terek, Aleksandar Miletić, Lazar Kovaĉević, Marko Vilotić MECHANICAL PROPERTIES OF TIN COATINGS DEPOSITED AT	
HARD TiN FILMS Damir Kakaš, Branko Škorić, Pal Terek, Aleksandar Miletić, Lazar Kovaĉević, Marko Vilotić MECHANICAL PROPERTIES OF TIN COATINGS DEPOSITED AT DIFFERENT TEMPERATURES BY IBAD Bogdan Nedić, Desimir Jovanović, Gordana Lakić Globoĉki	83

Aleksandar Todić, Dejan Ĉikara, Tomislav Todić, Branko Pejović, Bogdan Ćirković, Ivica Ĉamagić THE EFFECT OF VANADIUM CONTENT ON MECHANICAL PROPERTIES	
AND STRUCTURE OF SELF-TEMPERED STEEL X160CrMo12-1	99
Radovan Ćirić, Emil Veg, Biljana Savić, Zvonimir Jugović, Radomir Slavković ANALYSIS OF THE IMPACT OF EXPLOSION HARDENING PROCEDURE ON CHARACTERISTICS OF SURFACE LAYER OF ELEMENTS EXPOSED TO ABRASION.	103
SECTION C:	
Production engineering – new technologies and globalisation of engineering	
Mijodrag Milošević, Velimir Todić, Dejan Lukić WEB-BASED COLLABORATIVE ENVIRONMENT FOR PROCESS PLANNING	109
Slobodan Tabaković, Cvijetin MlaČenović, Milan Zeljković, Ratko GATALO ANALYSIS OF KINEMATIC CHARACTERISTICS OF MACHINE TOOLS USING A VIRTUAL MODEL.	113
ĐorĊeĈiĉa, M. Zeljković, G. Lakić-Globoĉki, B. Sredanović, S. Borojević MODELING OF DYNAMICAL BEHAVIOR SPINDLE – HOLDER – TOOL ASSEMBLY	117
Bogdan Ćirković, Ivica Ĉamagić, Nemanja Vasić COMPOSITE MATERIALS SUCH APSORPTION MATERIALS FOR SUPPORTING STRUCTURES OF MACHINES	121
Predrag Ćosić, Dragutin Lisjak, Valentina Latin MULTIOBJECTIVE OPTIMIZATION – POSIBILITY FOR PRODUCTION IMPROVEMENT.	125
Vladimir Kvrgić, Miroslav Vasić, Vladimir Ĉarapić, Jelena Vidaković, Velimir	
Komadinić C RESEARCH AND DEVELOPMENT OF THE NEW GENERATION FIVE AXIS VERTICAL TURNING CENTRES.	129
Robert Cep, Jan Strbka, Lenka Cepova DEPENDENCE OF SURFACE ROUGHNESS FOR SHAFT PACKING	133
SECTION D:	
Metrology, quality systems and quality management	
Milan Blagojević, Miroslav Țivković, Ana Pavlović QUALITY CONTROL OF CONTOUR VERIFIER USING PHOTOGRAMMETRIC MEASURING SYSTEMS	139

Miodrag Hadţ istević, Janko Hodoliĉ, Igor Budak, ĐorĊe Vukelić, Branko Štrbac RESULTS OF THE ANALYSIS ON STYLUS CALIBRATION OF COORDINATE MEASURING MACHINE (CMM).	143
Krzysztof Stepien RESEARCH ON INFLUENCE OF THE SENSOR POSITION ON THE RESULT OF THE V-BLOCK CYLINDRICITY MEASUREMENT	147
Milan Kolarević, Branko Radiĉević, Miomir Vukićević, Mišo Bjelić, Ljubinko Cvetković IMPROVING PRODUCT QUALITY OF SECURITY EQUIPMENT USING SPC	151
Vladan Radlovaĉki, Radmila Jovanović, Bato Kamberović, Milan Delić, SrČan Vulanović THE ROLE OF MANAGERS IN IMPLEMENTING QUALITY MANAGEMENT STANDARDS	155
PeĊaMilosavljević, Dragoljub Ţivković, Predrag Janković, SrĊan Mladenović THE POSSIBILITIES FOR IMPROVEMENT OF THE MAINTENANCE PROCESSES IN THE COMPANIES.	159
Bojan Ranĉić, Predrag Janković, SrĊan Mladenović, Slaviša Planić DESIGN AND TENSIOMETRIC ANALYSIS OF THE C-CLAMP FOR RAILROAD TRACKS	163
TRACKS Slavenko Stojadinović, Vidosav Majstorović METROLOGICAL PRIMITIVES IN PRODUCTION METROLOGY – ONTOLOGICAL APPROACH	167
Remigiusz Labudzki THE USE OF MACHINE VISION TO RECOGNIZE OBJECTS	171
Jelena Micevska, Zoran Spiroski, Jasmina Ĉaloska, Atanas Koĉov PRODUCT QUALITY CONTROL BY USING REVERSE ENGINEERING	175
SECTION E:	
CAx technologies (CAD/CAM/CAPP/CAE systems) and CIM systems	
Jozef Novak-Marcincin, Miroslav Janak, Ludmila Novakova-Marcincinova, Veronika Fecova, Jozef Barna APPLICATION OF THE COMPUTER AIDED SELECTION OF OPTIMAL CNC MILLING STRATEGY.	181
Janko Hodoliĉ, Tatjana Puškar, Igor Bešić CURRENT STATUS AND FUTURE TRENDS IN DENTAL CAM RESTORATIVE SYSTEMS	185
O I O I Datio	100

Goran Devedţić, Sasa Ćuković, Branko Ristić, Suzana Petrović, Michele Fiorentino, Tanja Luković COMBINED REGISTRATION OF HUMAN MUSCULOSKELETAL SYSTEM	189
Radomir Slavković, Zvonimir Jugović, Ivan Milićević, Marko Popović, Radomir Radiša	
OPTIMIZATION OF CAD/CAM/CAE DESIGN OF THE CONNECTING PART OF EXCAVATOR'S TOOTH THROUGH THE SIMULATION OF MANUFACTURING TECHNOLOGY.	193
Stevo Borojević, Vid Jovišević, Gordana Globoĉki Lakić, ĐorČe Ĉiĉa, Branislav Sredanović	
IDENTIFICATION OF FACE FUNCTIONALITY WITH PROGRAM SYSTEM FOR PURPOSE OF MODULAR FIXTURE DESIGN	197
Dragan Marinković, Manfred Zehn FEM IN VIRTUAL REALITY CONCEPT	201
Ionut Ghionea, Ioan Tanase, Adrian Ghionea, Cristian Tarba APPLICATIONS BY CAM AND FEM SIMULATIONS IN ESTABLISHING THE MILLING CONDITIONS FOR PARTS WITH THIN WALLS	205
Nikola Korunović, Miroslav Trajanović, Miloš Stojković, Nikola Vitković, Milan Trifunović, Jelena Milovanović TIRE TREAD MODELING FOR FEA	209
Ivan Matin, Miodrag Hadţ istević, Janko Hodoliĉ, Đordje Vukelić AN INTERACTIVE CAD/CAE SYSTEM FOR MOLD DESIGN	213
Miroslav Pilipović, Ivan Danilov, Nikola Lukić, Petar Petrović VIRTUAL MANUFACTURING – ADVANCED MANUFACTURING EXAMPLES.	217
SECTION F:	
Education in the field of production engineering Engineering ethics Product development – product design Production system management Revitalization, reengineering and maintenance of manufacturing systems	
Miloš Ristić, Miodrag Manić, Boban Cvetanović MANUFACTURABILITY ANALISIS OF DIE-CAST PARTS	223
Sofija Sidorenko, Jelena Micevska, Ile Mircheski DESIGN OF MODULAR WHEELCHAIR FOR CHILDREN WITH CEREBRAL PALSY	227

Dragan Rajnović, Olivera Erić, Milica Damjanović, Sebastian Baloš, Leposava SiČanin THE CRACK PROPAGATION STUDY IN ALLOYED ADI MATERIALS	231
Suzana Petrović, Milan Erić, Goran Devedţić, Miodrag Manić, Saša Ćuković, Miloš Ćirović	
COLLABORATION AND COMMUNICATION IN INTEGRATED SYSTEM OF DIGITAL MANUFACTURING.	235
Vladimir Simić, Branka Dimitrijević MODELLING OF PRODUCTION SYSTEMS FOR END-OF-LIFE VEHICLES PROCESSING.	239
Dragan Mišić, Nikola Vitković, Miloš Stojković, Milan Zdravković, Miroslav Trajanović	
RESOURCES MANAGEMENT IN WORKFLOW MANAGEMENT SYSTEMS	243
Nedim Ganibegović, Sandira Eljsan STEAM TURBINE CASINGS REVITALIZATION	249
Tadej Tasner, Darko Lovrec COMPARISON OF MODERN ELECTROHYDRAULIC SYSTEMS	253
Goran Slavković, Țarko Spasić HYBRID CONTROLLER FOR SYSTEM MANAGEMENT OF INTEGRATED UNIVERSITY	257
Guenther Poszvek ESTABLISHMENT OF A LECTURE SERIES ON LIFE CYCLE DESIGN – ECODESIGN.	263
Dragan Temeljkovski, Predrag Popović, Bojan Ranĉić, Petar Đekić EVALUATION OF PRODUCT AND PRODUCTION TECHNOLOGIES QUALITY METHOD OF SUPERIORITY AND INFERIORITY	267
SECTION G:	
Forming and shaping technologies	
Neculai Nanu, Gheorghe Brabie THE INFLUENCE OF RESIDUAL STRESS DISTRIBUTION ON THE SPRINGBACK PARAMETERS IN THE CASE OF CYLINDRICAL DRAWN PARTS.	273
Srbislav Aleksandrović, Tomislav Vujinović, Milentije Stefanović, Vukić Lazić, Dragan Adamović VARIABLE CONTACT PRESSURE AND VARIABLE DRAWBEAD HEIGHT INFLUENCE ON DEEP DRAWING OF AI ALLOYS SHEETS	277

Bojan Ranĉić, Predrag Janković, Dragan Temeljkovski DETERMINING SOME PARAMETERS IN THE OIL HYDRAULIC PROCESS OF SQUARE CUPS DEEP DRAWING.	281
Bojan Ranĉić, Predrag Janković, Velibor Marinković ASSESSMENT THE NUMBER OF DEEP DRAWING STEPS OF CYLINDRICAL CUPS WITHOUT CALCULATION.	285
Dragan Adamović, Milentije Stefanović, Srbislav Aleksandrović, Miroslav Ţivković, Zvonko Gulišija, Slaviša Đaĉić THE INFLUENCE OF TOOL SURFACE CONDITION ON IRONING PROCESS EXECUTION	289
Zdravko Boţ iĉković, Ranko Radonjić, Ranko Boţ iĉković THE SIMULATION OF DISCONTINUOUS TIN BENDING IN THE PROCESS OF FORMING ROUND CONICAL TUBE	293
Milan Jurković, Zoran Jurković, Asim Jušić, Vesna Mandić EXPERIMENTAL ANALYSIS AND MATHEMATICAL MODELLING OF THE ROLLING FORCE.	297
Dragiša Vilotić, Miroslav Planĉak, Sergei Alexandrov, Aljoša Ivanišević, Dejan Movrin, Mladomir Milutinović NUMERICAL SIMULATION OF UPSETTING OF PRISMATIC BILLETS BY V-SHAPE DIES WITH EXPERIMENTAL VERIFICATION	301
Milan Lazarević, Dejan Lazarević, Miloš Jovanović, Saša RanĊdović THE APPLICATION OF ADAPTIVE FEM METHOD TO STRESS AND STRAIN ANALYSIS OF COLD FORGING PROCESS	305
Mladomir Milutinović, Dragiša Vilotić, Tatjana Puškar, Dubravka Marković, Aljoša Ivanišević, Michal Potran METAL FORMING TECHNOLOGIES IN DENTAL COMPONENTS PRODUCTION.	309
SECTION H:	
Rapid prototyping Reverse engineering	
Miroslav Planĉak, Tatjana Puškar, Ognjan Luţanin, Dubravka Marković, Plavka Skakun, Dejan Movrin SOME ASPECTS OF RAPID PROTOTYPING APPLICATION IN MEDICINE	315
Nenad Grujović, Jelena Borota, Milan Šljivić, Dejan Divac, Vesna Ranković ART AND DESIGN OPTIMIZED 3D PRINTING	319
Nenad Grujović, Milan Radović, Vladimir Kanjevac, Jelena Borota, ĐorČe Grujović, Dejan Divac	
3D PRINTING TECHNOLOGY IN EDUCATION ENVIRONMENT	323

Nikola Milivojević, Nenad Grujović, Dejan Divac, Vladimir Milivojević, Jelena Borota	
AUGMENTED REALITY ASSISTED PART REMOVAL FOR POWDER-BASED 3D PRINTING SYSTEMS	327
Dalibor Nikolić, Branko Ristić, Milovan Radosavljević, Nenad Filipović APPLIED RAPID PROTOTYPING TECHNOLOGY AND MODELING IN THE SPECIFIC PATIENT DAMAGE HIP REPLACEMENT	331
Milan Trifunović, Jelena Milovanović, Miroslav Trajanović, Nikola Korunović, Miloš Stojković APPROACHES TO AUTOMATED CREATION OF TISSUE ENGINEERING SCAFFOLDS.	335
Radomir Vukasojević, Simo Saletić, Ţeljko Raiĉević 3D DIGITIZING FREE FORM SURFACES BY OPTICAL TRIANGULARING LASER SCANNING	339
Milan Blagojević, Miroslav Țivković, Bojana Rosić QUALITY 3D SURFACE RECONSTRUCTION BASED ON POINT CLOUD GENERATED BY OPTICAL MEASURING TECHNIQUES	343
Goran Devedţić, Suzana Petrović, Saša Ćuković, Branko Ristić, Zoran Jovanović, Miloš Ćirović TOWARDS DIGITAL TEMPLATE FOR ARTIFICIAL HIP IMPLANTS SELECTION.	347
Nikola Vitković, , Jelena Milovanović, Miroslav Trajanović, Nikola Korunović, Miloš Stojković, Miodrag Manić METHODS FOR CREATING GEOMETRICAL MODEL OF FEMUR ANATOMICAL AXIS.	351
Marko Veselinović, Dalibor Stevanović, Miroslav Trajanović, Miodrag Manić, Stojanka Arsić, Milan Trifunović, Dragan Mišić METHOD FOR CREATING 3D SURFACE MODEL OF THE HUMAN TIBIA	355
Dejan Petrović, Marko AnĊdković, Ljiljana Tihaĉek-Šojić, Nenad Filipović COMPUTER BIOMECHANICAL ANALYSIS OF SPECIFIC TOOTH FOR DIFFERENT APPLIED LOADING.	359
SECTION I:	
Automatization, robotization and mechatronics IT and artificial inteligence in production engineering	
Ţivana Jakovljević, Miroslav Pajić, Dragan Aleksendrić, Dragan Milković WIRELESS SENSOR NETWORK APPLICATION IN MONITORING OF MACHINING OPERATIONS	365

Dušan Kravec, Marian Tolnay, Ondrej Staš, Michal Bachraty IMPLEMENTATION OF PALLET LOADING METHODS AND VIRTUAL REALITY TO THE NEW SOFWARE PRODUCT	369
Jan Slamka, Marian Tolnay, Michal Jedinak LAYOUT DESIGN OF VACUUM EFECTOR HEAD FOR MANIPULATION WITH FLOPPY MATERIALS	373
Vladislav Blagojević, Miodrag Stojiljković, Milorad Ranĉić DC SERVO MOTORS CONTROL OF CNC MACHINES BY SLIDING MODE	377
Dragan Milutinović, Miloš Glavonjić, Nikola Slavković, Saša Ţivanović, Branko Kokotović, Zoran Dimić COMPLIANCE MODELING AND IDENTIFICATION OF 5-AXIS VERTICAL ARTICULATED ROBOT FOR MACHINING APPLICATIONS	381
Dalibor Petković, Nenad Pavlović INVESTIGATION AND ADAPTIVE NEURO-FUZZY ESTIMATION OF MECHANICAL /ELECTRIAL PROPERTIES OF CONDUCTIVE SILICONE RUBBER.	385
Milica Petrović, Zoran Miljković, Bojan Babić, Najdan Vuković, Nebojša Ĉović TOWARDS A CONCEPTUAL DESIGN OF AN INTELLIGENT MATERIAL TRANSPORT BASED ON MACHINE LEARNING AND AXIOMATIC DESIGN THEORY.	389
Milan Erić, Miladin Stefanović, Branko Tadić, Slobodan Mitrović SOFTWARE SOLUTION OF REENGINEERING MODEL OF TECHNOLOGICAL PROCESSES OF SMALL ENTERPRISES.	393
Milan Zdravković, Miroslav Trajanović, Herve Panetto, Alexis Aubry, Mario Lezoche ONTOLOGY-BASED SUPPLY CHAIN PROCESS CONFIGURATION	399
Vesna Ranković, Nenad Grujović, Dejan Divac, Nikola Milivojević, Konstantinos Papanikolopoulos, Jelena Borota PREDICTION OF THE NONLINEAR STRUCTURAL BEHAVIOUR BY DIGITAL RECURRENT NEURAL NETWORK	403
Darko Stefanović, Andraš Anderla, Cvijan Krsmanović, Aleksandar Ivić ERP IMPLEMENTATION STRATEGIES FOR MANUFACTORING COMPANIES IN E-BUSINESS ENVIRONMENT	407
SECTION J:	
Nonconventional technologies (Advanced machining technologies)	
Laurențiu Slatineanu, Margareta Coteata, Miroslav Radovanović, Stefan Potarniche, Lorelei Gherman, Irina Besliu SURFACE ROUGHNESS AT ABRASIVE JET ENGRAVING OF GLASS PARTS	413

Marin Gostimirović, Pavel Kovaĉ, Milenko Sekulić, Borislav Savković THE RESEARCH OF DISCHARGE ENERGY IN EDM PROCESS	417
Dragan Adamović, Milentije Stefanović, Branislav Jeremić, Srbislav Aleksandrović THE EFFECTS OF SHOT PEENING ON THE FATIGUE LIFE OF MACHINE ELEMENTS.	421
AnĊda Lazarević, Miodrag Manić, Dragoljub Lazarević ENERGY BALANCE OF THE PLASMA ARC CUTTING PROCESS	425
SrĊan Mladenović, Miroslav Radovanović MODEL FOR OPERATING COSTS OF PLASMA CUTTING	431
Predrag Janković, Miroslav Radovanović, Jelena Baralić CUT QUALITY IN ABRASIVE WATER JET CUTTING	435
Bogdan Nedić, Jelena Baralić, Miroslav Radovanović THE COMPLEXITY OF DEFINING THE QUALITY OF LASER CUTTING	439
Jelena Baralić, Bogdan Nedić, Predrag Janković MACHINING PARAMETERS EFFECT ON THE JET RETARDATION IN ABRASIVE WATER JET MACHINING.	443
SECTION K:	
Joining and casting technologies Processing of nonmetal materials (plastic, wood, ceramics,)	
	449
Processing of nonmetal materials (plastic, wood, ceramics,) Michael Kheifetz, Natalia Pozilova, Alexander Pynkin, Leonid Akulovich ANALYSIS AND DESIGN OF HIGHLY EFFICIENT METHODS OF	449 453
Processing of nonmetal materials (plastic, wood, ceramics,) Michael Kheifetz, Natalia Pozilova, Alexander Pynkin, Leonid Akulovich ANALYSIS AND DESIGN OF HIGHLY EFFICIENT METHODS OF TREATMENT Vladimir Borodavko, Gaiko Victor, Viacheslav Kroutko, Michael Kheifetz, Elena Zeveleva DESIGN OF TECHNOLOGICAL COMPLEXES FOR HIGHLY EFFICIENT	
Processing of nonmetal materials (plastic, wood, ceramics,) Michael Kheifetz, Natalia Pozilova, Alexander Pynkin, Leonid Akulovich ANALYSIS AND DESIGN OF HIGHLY EFFICIENT METHODS OF TREATMENT Vladimir Borodavko, Gaiko Victor, Viacheslav Kroutko, Michael Kheifetz, Elena Zeveleva DESIGN OF TECHNOLOGICAL COMPLEXES FOR HIGHLY EFFICIENT TREATMENT Radivoje Mitrović, Dejan Momĉilović, Olivera Erić, Ivana Atanasovska INFLUENCE OF PRODUCTION PROCESS ON FATIGUE PROPERTIES OF	453

Vukić Lazić, Dragan Milosavljević, Srbislav Aleksandrović, Rajko Ĉukić, Boţidar Krstić, Gordana Bogdanović DETERMINATION OF OPTIMUM TEMEPERING TEMPERATURE IN HARD FACING OF THE FORGING DIES FOR WORKING AT ELEVATED TEMPERATURES.	469
Vukić Lazić, Dragan Milosavljević, Srbislav Aleksandrović, Rajko Ĉukić, Boţidar Krstić, Gordana Bogdanović SELECTION OF THE WELDING TECHNOLOGY OF RELIABLE ASEMBLIES USING GMAW PROCESS.	473
Dragan Milĉić, Aleksandar Țivković, Miroslav Mijajlović AN OVERVIEW ON FRICTION STIR WELDING OF THE AL 2024 T351	477
Nenad Gubeljak, Bojan MeĊo, Jozef Predan, Marko Rakin, Goran Radenković, Aleksandar Sedmak DETERMINATION OF TENSILE PROPERTIES OF WELDED JOINTS – INFLUENCE OF SPECIMEN GEOMETRY	481
Anka Trajkovska Petkoska MANUFACTURING AND CHARACTERISATION OF FLAKES MADE BY SOFT LITHOGRAPHY TECHNIQUE.	485
Rok Justin, Davorin Kramar, Janez Kopaĉ, Mirko Soković INDUSTRIALIZATION OF EASY BOOM	489
SECTION L:	
SECTION L: Tribology	
	495
Tribology Miroslav Planĉak, Igor Kaĉmarĉik, Dejan Movrin, ĐorĊeĈupković PROPOSAL OF A NEW FRICTION TESTING METHOD FOR BULK METAL	495
Tribology Miroslav Planĉak, Igor Kaĉmarĉik, Dejan Movrin, ĐorĊeĈupković PROPOSAL OF A NEW FRICTION TESTING METHOD FOR BULK METAL FORMING Plavka Skakun, Igor Kaĉmarĉik, Tomaţ Pepelnjak, Ognjan Luţanin, Aljosa Ivanišević, Mladomir Milutinović COMPARISON OF CONVENTIONAL AND NEW LUBRICANTS FOR COLD	
Tribology Miroslav Planĉak, Igor Kaĉmarĉik, Dejan Movrin, ĐorĊeĈupković PROPOSAL OF A NEW FRICTION TESTING METHOD FOR BULK METAL FORMING Plavka Skakun, Igor Kaĉmarĉik, Tomaţ Pepelnjak, Ognjan Luţanin, Aljosa Ivanišević, Mladomir Milutinović COMPARISON OF CONVENTIONAL AND NEW LUBRICANTS FOR COLD FORMING Milentije Stefanović, Slaviša Đaĉić, Srbislav Aleksandrović, Dragan Adamović IMPORTANCE OF TRIBOLOGICAL CONDITIONS AT MULTI-PHASE	499

Dragoljub Lazarević, Predrag Janković, Miloš Madić, Andjela Lazaravić STUDY ON SURFACE ROUGHNESS MINIMIZATION IN TURNING OF POLYAMIDE PA-6 USING TAGUCHI METHOD	515
Slobodan Mitrović, Miroslav Babić, Dragan Adamović, Fatima Țivić, Dragan Dţunić, Marko Pantić WEAR BEHAVIOUR OF Cr HARD COATINGS FOR COLD FORMING TOOLS UNDER DRY SLIDING CONDITIONS	519
Ivan Sovilj-Nikić, Bogdan Sovilj, Stanislaw Legutko, Sandra Sovilj-Nikić, Ivan Samardţić, Ivan Kolev INFLUENCE OF WEAR OF CUTTING ELEMENTS OF CONVEX MILLING CUTTERS ON PROCESSED SURFACE TOPOGRAPHY	523
Marko Vilotić, Damir Kakaš, Aleksandar Miletić, Lazar Kovaĉević, Pal Terek INFLUENCE OF FRICTION COEFFICIENT ON WORKPIECE ROUGHNESS IN RING UPSETTING PROCESS.	527
Boţica Bojović, Dušan Kojić, Zoran Miljković, Bojan Babić, Milica Petrović FRICTION FORCE MICROSCOPY OF DEEP DRAWING MADE SURFACES	531
Previous winners of the charter and plaque "Professor dr Pavle Stanković"	537
AUTOR INDEX	545

SOUTH O MAILLAND

28. - 30. September 2011, Niš, Serbia University of Niš, Faculty of Mechanical Engineering

AN OVERVIEW ON FRICTION STIR WELDING OF THE AL 2024 T351

Dragan MILĈIĆ¹, Aleksandar ŽIVKOVIĆ², Miroslav MIJAJLOVIĆ¹

¹ University of Nis, Faculty of Mechanical Engineering Nis, Aleksandra Medvedeva 14, 18000 Nis, Serbia ² Goša FOM a.d., Industrijska 70, 11420 Smederevska Palanka, Serbia milcic@masfak.ni.ac.rs, a.zivkovic@gosafom.com, mijajlom@masfak.ni.ac.rs

Abstract: Friction stir welding is a solid state welding technique used for joining soft metals such aluminium and its alloys are. Alloy 2024 is a representative of conventionally unweldable alloys but fully wieldable by friction stir welding. In this case, welding is possible only when proper geometry of the welding tool, welding speed etc. are selected. Like for other welding techniques, results of the welding have to be evaluated by testing given by requirements of appropriate standards. However, it is a challenge to select proper parameters and paper presents some successful experimental results on this topic and announces further developments in the technology of the friction stir welding.

Key words: Friction Stir Welding, 2024 aluminium alloy

1. INTRODUCTION

Friction stir welding (FSW) is a solid state welding process predominantly used for joining materials difficult to weld by applying some of conventional processes. Its application is mainly connected with the welding of aluminium alloys and other soft metals/alloys. In comparison to other welding processes, FSW delivers the smallest amount of energy to the base metal, which results in the smallest deformation in the structure of the base metal. However, FSW is still an unconventional welding process because of the complexity of application and the need for long welds in order to have great productivity. FSW is used for plate-shaped parts [1].

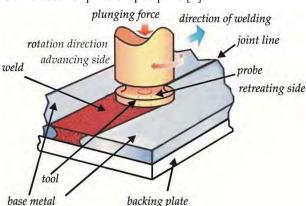


Figure 1 Schematic of the FSW process

In FSW, a cylindrical, shouldered tool (Figure 1) with a profiled threaded probe is rotated at a constant speed and fed at a constant traverse speed into the joint line between two plates, which are butted together. The parts have to be clamped rigidly onto a backing plate to enable welding.

2. WELDING TOOL

Welding tool used in FSW is a specialized rotating component that passes entirely through or partially

through the workpiece(s) along the joint line, and may or may not have a shoulder [1] and the welding tool always has a probe. The probe is usually cone or cylindrical with the thread on the side. It is common to use left sided thread for clockwise rotation of the welding tool or right sided thread for counterclockwise rotation of the welding tool. The type of the thread is various: metric, profiled, oval etc., with changeable/unchangeable thread step. What type of the thread and thread step will be used depends from the material of workpieces (base metal).

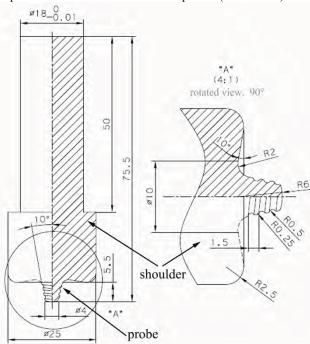


Figure 2 Drawing of the common welding tool [2]

Welding tools must resist high temperatures, and wear and they are manufactured from durable, heat resistant and high strength steels. Active surfaces [1] of the welding tool are usually manufactured by milling or turning, polished and heat treated after machining – annealed and normalized. Hardness of active surfaces on the welding tool should be at least the same as the hardness of workpieces or higher.

3. WORKPIECES

The first application of FSW was on the groove welds on railway vehicles [1] however it was never intended to be used only for the one type. Development of the FSW was tremendous and it expanded on various fields as well as on application on butt welds, spots welds etc. However, groove welds are primary application of the FSW especially on the plate-shaped parts where pipes are included as well.

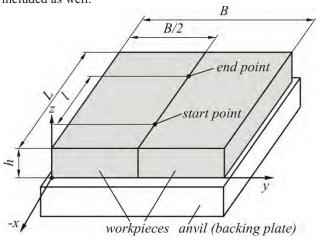


Figure 3 Scheme of the positioned workpieces in position for welding

Before the welding start workpieces are set on an anvil (backing plate), connected to each other on the joint line and clamped to the work table of the machine. Workpieces must be rigidly clamped since forces that appear during welding have to be used for deformation, stirring and mixing of material instead of moving workpieces. Anvil assists in weld root creation and supports workpieces during welding. It has to be manufactured from stiff, rigid, with low thermal conductivity material capable to maintain stability of the system and reduce thermal loses.

3.1. Material of workpieces

FSW is widely used for the joining of softer metals such aluminium and aluminium alloys are. Aluminium alloys are always a challenge for welding, without concern on weldability or unweldability of base metal. Like other arc welding processes, FSW is applicative for welding of $5\times\times\times$ and $6\times\times\times$ series of Al alloys but its advantages over other processes are seeable when welding $2\times\times\times$ class of Al alloy. A representative of the $2\times\times\times$ class is alloy 2024 and it is widely used in FSW processes.

Aluminium alloy 2024 is an Al alloy, with Cur and Mg as the alloying elements. It is used in applications requiring high strength to weight ratio, as well as good fatigue resistance. It is not weldable, and has average machinability. Due to poor corrosion resistance, it is often clad with Al or Al-Zn for protection, although this procedure may reduce the fatigue strength. It has a density

of 2.73 g/cm³, Young's modulus of 73 GPa across all tempers, and begins to melt at about 500 °C. Due to its high strength and fatigue resistance, 2024 is widely used in aircraft structures, especially wing and fuselage structures under tension. Because the material is susceptable to thermal shock, 2024 is used in qualification of liquid penetrant tests outside of normal temperature ranges.

Table 1. Chemical composition and mechanical properties of alloy EN AW 2024 T351

Chemical comp	osition	Mechanical properties	
Chemical	Mass		
element	%	0.00/ D CC/	266 274
Al	~	0.2% Proof Stress $Rp_{0.2}$	266-274 N/mm ²
S	0.12	$\kappa p_{0,2}$	18/111111
Fe	0.28		
Cu	4.52		
Mn	0.65	Tensile Strength R_m	404-424
Mg	1.60	Tenshe Suengui Λ_m	N/mm ²
Cn	0.01		
Zn	0.09		
Ti	0.016	Elangation A	22.00%
В	0.009	Elongation A ₅	22.00%
N	0.02		

Data in Table 1 is taken from the Approved Certificate data: Alcoa International, inc, No 47831, for sheet of 2100 mm \times 6000 mm \times 8mm, material EN AW 2024 T351 used for the FSW process (experiments).

4. TECHNOLOGICAL PARAMETERS

FSW is effective and productive only when the right combination of the welding tool (material, geometry, surface condition etc.) is used on proper workpieces (material, geometry, type of joint etc.) with proper technological parameters of the FSW process (travel speed, tool rotation speed, plunging time, dwelling time etc.). Only in that case appear adequate tribological processes and phenomena (contact pressure, friction, wear, lubrication, heat generation, deformation, adhesion, material exchange etc.) which result with monolith joint between workpieces and qualitative weld.

Technological parameters are the few properties of FSW directly changeable and/or adjustable during welding process. However, selection of proper technological parameters, meaning, travel speed v_{ts} and tool rotation speed v_{rot} , as the most important ones is a difficult task. From the beginning of FSW's industrial application (mid 1992.) until present days, selection of travel speed and tool rotation speed is done by ,try and error" principle. Usable data about the technological parameters for specific processes/materials are usually hidden.

In most of the cases technological parameters of FSW are given over the welding step determined as the ration of tool rotation speed and travel speed v_{rot} / v_{ts} .

Tivković [2] has estimated that 2024 alloy can be successfully welded for the weld step varying from 30 to 5, where the best results were achieved for parameters given in the Table 2. Welding was performed more than 100 times.

Table 2. Experimental welding step values for successful welding of the 2024 alloy [2]

v_{rot} / v_{ts}				
1180/116=10.17	1180/46=25.65			
750/150=5.00	750/116=6.64	750/93=8.06	750/73=10.27	

5. VERIFICATION OF RESULTS

The final result of the FSW has to be a product that must fulfill its projected purpose. Decomposing this statement to the primary level: FSW joint has to be qualitative and should at least maintain properties of the base metal in projected range if not possible to improve them.

According to the existing standards in FSW [3], verification of the results and FSW process has to be done by testing of specimens that have to be specially prepared and extracted from the welded structure (Figure 4).

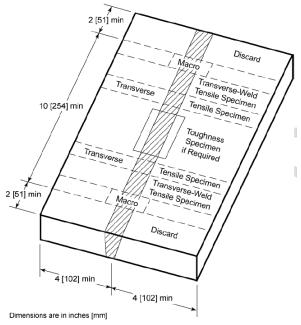


Figure 5 Location of Square Groove Weld Test Specimens—Plate [3]

5.1. Mechanical properties

Welded structures can be overmatched or undermatched from the aspect of the weld joint's strength. FSW process applied on 2024 alloy mostly gives overmatched structures: values of the strength, yield stress, hardness, elongation etc. slightly drop in the area of the weld or heat affected zone (HAZ) (Table 3).

Table 3 Experimental values of mechanical properties of FSW processed 2024 alloy in HAZ [2]

Test Nº.	$Rp_{0,2}$, MPa	R_m , Mpa	A ₅ ,%	v_{rot} / v_{ts}
1	323	398	6,0	1180/116=10,17
2	316	319	7,1	1180/46=25,65
3	324	330	4,8	750/150=5,00
4	318	395	7,5	750/73=10,27
5	/	210	2,2	750/150=5,00
6	313	365	4,2	750/73=10,27

The common hardness diagram of 2××× class has a specific W-shape: hardness of the material on join (center) line has some median value and distancing from the center line it gradually drops until the center of the HAZ than it rises and stabilizes its value outside the HAZ.

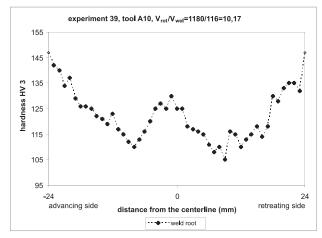


Figure 5 Hardness distribution in FSW, for 2024 alloy [2]

Hardness peak on the centerline is a result of the nugget zone (N). Nugget is the zone of fully recristalized material that appears on the very center of the joint line and it is a product of intensive plastic deformation initiated by the welding tool and heat treatment of material (during the welding process) (Figure 6).

wedning process) (Figure 0):

Figure 6 Macroscopic section on nugget zone of the FSW weld on 2024 alloy [2]

6. FUTURE WORK, DISCUSSION AND CONCLUSIONS

During past 20 years of application of FSW, science has given the great tribute to its improvement and better understanding the process itself. Numerous researches on the FSW application were aimed in recognition of dominant parameters that influence the process and the possibilities of their adjustments in order to reach optimal or desired characteristics of welds [4].

As mentioned earlier, some parameters of the FSW process are adjustable and simple to change since they depend only on possibilities of the system or fabricator. Challenge is to manipulate with other, nonadjustable or difficult to be adjusted parameters that depend not only from the process but from various physical phenomena as well. From the early beginning of application it is recognized that dominant processes in weld creation during FSW are deformation and heating. Literature explains differently these two processes: somewhere this

is stirring and heat generation, somewhere adhesion, diffusion, wear and friction, and some authors explain it as a pure mechanical process with the influence of other processes.

If some accepts any of the proposed explanation to be satisfactory accurate, FSW will still remain elusive from some point of view, either on macro or micro level, and the shade of our (human) no-understanding of the physics keeps us away from perfect deign of the FSW. Anyhow, this challenge is overcome by numerous experiments and researches, and analysis of the processes that appear during FSW – good explanation of these processes helps in understanding the FSW in general.

With the goal of better design of the FSW (meaning: proper selection of technological parameters, geometrical parameters of the welding tool, workpieces" preparation etc.) mathematical model for the heat generation during FSW is developed. Heat is a necessity of the FSW process and its tribute in better weld creation lies dominantly in softening of the workpieces and easing the deformation/adhesion/stirring... process during weld creation.

Mathematical model relies on mathematical analysis, theoretical assumptions, state of the art in measuring techniques, recognition of dominant physical phenomena etc (Figure 7).

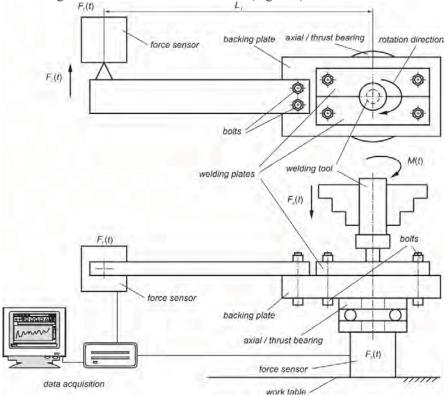


Figure 7 Scheme of the experimental setup for the FSW process

Further research in this area of FSW requires:

- 1. Recognition and precise determination of active/reactive forces in the system welding toolworkpieces, its influence and possibilities of increase/decrease of their magnitude.
- 2. Estimation of tribological parameters in contact between welding tool and workpieces (friction coefficient, contact pressure, adhesion, wear, selfaligning, selflubrication etc.)
- 3. Possibilities of the process efficiency increase (energy consumption, heat losses cuts etc.).

ACKNOWLEDGMENT

The paper presents and preliminary research observations needed for the realization of the research project TR35034 – "An investigation into modern non-conventional technologies: applications in manufacturing companies with the aim of increasing efficiency of use and product quality, of reducing costs and of saving energy and materials". The project is supported by the Ministry of Education and Science of the Republic of Serbia.

REFERENCES

- [1] Mijajlović, M, Milĉić, D, Stamenković, D, Ţivković, A: Mathematical Model for Generated Heat Estimation During Plunging Phase of FSW Process, Transactions of Famena, Faculty of Mechanical Engineering and Naval Architecture, Zagreb, Croatia, XXXV-1/2011, April 2011, pp 39 54, ISSN 1333-1124, UDC 621.791.1.
- [2] Ţivković, A: Influence of friction stir welding tool geometry on properties of welded joint of alloys Al 2024, PhD thesis, University of Belgrade, Faculty of Mechanical Engineering, 2011.
- [3] AWS D17.3/D17.3M:2010 Specification for Friction Stir Welding of Aluminum Alloys for Aerospace Applications, 2010.
- [4] Thomas W M et al. 1991 Friction stir butt welding International Patent Application No PCT/GB92/02203; Thomas W M et al. 1995 Friction stir butt welding GB Patent Application No 9125978.8; Thomas W M et al. 1995 Friction stir butt welding UP Patent No 5 460 317.

29. - 30. September 2011, Niš, Serbia University of Niš, Faculty of Mechanical Engineering

AUTHOR INDEX

\mathbf{A}		C	
Aco ANTIC	65	Cristian TARBĂ	205
Adrian GHIONEA	205	Cvijan KRSMANOVIĆ	407
Aleksandar IVIĆ	407	Cvijetin MLAĐENOVIĆ	113
Aleksandar MILETIĆ	79 ,83 ,527	3	
Aleksandar SEDMAK	481	D	
Aleksandar TODIĆ	99		221
Aleksandar ŢIVKOVIĆ	65, 477	Dalibor NIKOLIĆ Dalibor PETKOVIĆ	331
Alexander PYNKIN	449	Dalibor STEVANOVIC	385 355
Alexis AUBRY	399	Danior STEVANOVIC Damir KAKAŠ	79, 83, 527
Alin Dan JURCHELA	75	Danica JOSIFOVIĆ	465
Aljoša INAVIŠEVIĆ	309	Darko LOVREC	253, 507, 511
Aljosa IVANISEVIC	301, 499	Darko STEFANOVIĆ	253, 507, 511
Anđela LAZAREVIĆ	425, 515	Davorin KRAMAR	489
Andraš ANDERLA	407	Dejan ĈIKARA	99
Andreja ILIĆ	465	Dejan DIVAC	319, 323, 327, 403
Anka TRAJKOVSKA PETKOSKA	485	Dejan LAZAREVIC	319, 323, 327, 403
Asim JUŠIĆ	297	Dejan LUKIĆ	109
Atanas KOĈOV	175	Dejan MOMĈILOVIĆ	457
		Dejan MOVRIN	301, 315, 495
В		Dejan PETROVIĆ	359
B. SREDANOVIC	117	Desimir JOVANOVIĆ	87
Baila DIANA	49	Dijana NADAREVIĆ	53
Bato KAMBEROVIĆ	155	Dorian MARJANOVIĆ	13
Biljana SAVIĆ	103	Dragan ADAMOVIC	277, 289, 421, 503, 519
Boban CVETANOVIĆ	223	Dragan ALEKSENDRIC	365
Bogdan ĆIRKOVIĆ	99, 121	Dragan DŢUNIĆ	519
Bogdan NEDIĆ	87,439, 443	Dragan MARINKOVIC	201
Bogdan SOVILJ	523	Dragan MILĈIĆ	477
Bojan BABIĆ	389, 531	Dragan MILKOVIC	365
Bojan MEDJO	481	Dragan MILOSAVLJEVIĆ	469, 473
Bojan RANĈIĆ	163, 267, 281, 285	Dragan MILUTINOVIC	381
Bojana ROSIĆ	343	Dragan MISIC	243, 355
Borislav SAVKOVIC	417	Dragan RAJNOVIC	91, 231
Bozica BOJOVIC	531	Dragan TEMELJKOVSKI	267, 281
Boţid ar KRSTIĆ	469, 473	Dragisa VILOTIC	301, 309
Branislav JEREMIĆ	421	Dragoljub LAZAREVIC	425, 515
Branislav SREDANOVIĆ	197	Dragoljub ŢIVKOVIĆ	159
Branka DIMITRIJEVIĆ	239	Dragutin LISJAK	125
Branko KOKOTOVIC	381	Dubravka MARKOVIĆ	309, 315
Branko PEJOVIĆ	99	Dusan JOVANIC	461
Branko RADIĈEVIĆ	151	Dusan KOJIC	531
Branko RISTIĆ	331, 347, 189	Dušan KRAVEC	369
Branko ŠKORIĆ	79, 83	224 2 . 20	307
Branko STRBAC	143	Ð	
Branko U. TADIĆ	393	D Đorđe ĈIĈA	117 107
		Dorde CICA Dorđe ĈUPKOVIĆ	117, 197
			495
		Đorđe VUKELIC	213

E, F		Jozef NOVAK-MARCINCIN	181
Elena ZEVELEVA	453	Jozef PETERKA	61
Emil VEG	103	Joțe f PREDAN	481
Fatima ŢIVIĆ	519		
Franc CUS	29	K, L, Lj	
		Konstantinos PAPANIKOLOPOULOS	403
СП		Krzysztof STĘPIEŃ	147
G, H	117	L. KOVAĈEVIĆ	83
G. LAKIĆ-GLOBOĈKI	117	Laurențiu SLĂTINEANU	413
George GRUJOVIC	323	Lazar KOVAĈEVIĆ	79, 527
Gheorghe BRABIE	273	Lenka CEPOVA	133
Goran DEVEDŢIĆ	189, 235 , 347	Leonid AKULOVICH	449
Goran MLADENOVIC	41	Leposava SIDJANIN	231
Goran RADENKOVIĆ	69, 481	Leposava SIDJANIN	91, 231
Goran SLAVKOVIĆ	257	_	
Gordana BOGDANOVI	469, 473	Lorelei GHERMAN	413
Gordana GLOBOĈKI LAKIĆ	197	Lozica IVANOVIĆ	465
Gordana LAKIĆ GLOBOĈKI	87	Lj. TANOVIĆ	33, 41
Guenther POSZVEK	263	Ljiljana TIHAĈEK-ŠOJIĆ	359
Hervé PANETTO	3, 399	Ljubinko CVETKOVIĆ	151
т		\mathbf{M}	
I		_	22
Igor BEŠIĆ	185	M. MILUTINOVIĆ	33
Igor BUDAK	143	Manfred ZEHN	201
Igor KAĈMARĈIK	495, 499	Marek ZVONĈAN	61
Ilare BORDEASU	75	Margareta COTEAŢĂ	413
Ile MIRCHESKI	227	Marián TOLNAY	369, 373
Ioan TĂNASE	205	Marin GOSTIMIROVIC	57, 417
Ion MITELEA	75	Mario LEZOCHE	399
Ionuț GHIONEA	205	Marko ANDJELKOVIĆ	359
Irina BEŞLIU	413	Marko KOVAĈEVIĆ	45
Ivan DANILOV	217	Marko PANTIĆ	519
Ivan KOLEV	523	Marko POPOVIC	193
Ivan MATIN	213	Marko RAKIN	481
Ivan MILICEVIC	193	Marko VESELINOVIC	355
Ivan SAMARDŢIĆ	523	Marko VILOTIĆ	79, 83, 527
Ivan SOVILJ-NIKIĆ	523	Martin KOVÁĈ	61
Ivana ATANASOVSKA	457	Michael KHEIFETZ	449, 453
Ivica ĈAMAGIĆ	99, 121	Michal JEDINÁK	373
	,	Michal POTRAN	309
J		Michele FIORENTINO	189
	272	Mihajlo POPOVIC	41
Ján SLAMKA	373	Mijodrag MILOŠEVIĆ	109
Jan STRBKA	133	Miladin Ţ. STEFANOVIĆ	393
Janez KOPAĈ	489	Milan BLAGOJEVI	139, 343
Janko HODOLIC	143, 185, 213	Milan ERIĆ	235, 393
Jasmina ĈALOSKA	175	Milan DELIĆ	155
Jasna RADULOVIĆ	95	Milan JURKOVIĆ	297
Jelena BARALIĆ	435, 439, 443	Milan KOLAREVIĆ	151
Jelena BOROTA	319, 323, 327, 403	Milan LAZAREVIC	305
Jelena MICEVSKA	175, 227	Milan RADOVIĆ	323
Jelena MILOVANOVIĆ	209, 335, 351	Milan ŠLJIVIĆ	319
Jelena VIDAKOVIĆ	129	Milan TRIFUNOVIĆ	209, 335, 355
Jozef BARNA	181	Milan ZDRAVKOVIC	243, 399
			,

M:lan ZEL IVOVIC	(5 112 117	-	
Milan ZELJKOVIC Milenko SEKULIĆ	65, 113, 117 417	P	
Milentije STEFANOVIC	277, 289, 421, 503	Pal TEREK	79, 83, 527
Milica DAMJANOVIC	277, 289, 421, 303	Pavao BOJANIC	41
Milica PETROVIĆ	389, 531	Pavel KOVAĈ	57, 417
Milorad RANĈIĆ	377	Peđa MILOSAVLJEVIĆ	
Miloš ĆIROVIĆ	235, 347	Petar PETROVIĆ	15, 217
Milos GLAVONJIC	381	Petar ĐEKIĆ	267
Milos JOVANOVIC	305, 461	Plavka SKAKUN	315, 499
Miloš MADIĆ	45, 69, 515	Predrag ĆOSIĆ	125
Miloš RISTIĆ	223	Predrag	162 201 205 425 442 515
Miloš STOJKOVIĆ	209, 335, 243		0, 163, 281, 285, 435, 443, 515
Milovan RADOSAVLJEVIĆ	331	Predrag PETROVIĆ	95
Miodrag HADŢISTEVIĆ	57, 143, 213	Predrag POPOVIĆ	267
Miodrag MANIĆ	223, 235, 351, 355, 425	D	
Miodrag STOJILJKOVIĆ	377	R	
Miomir VUKIĆEVIĆ	151	Rade IVANKOVIĆ	37
Mircea Octavian POPOVICIU	75	Radivoje MITROVIĆ	457
Mirko SOKOVIĆ	53, 489	Radmila JOVANOVIĆ	155
Miroslav BABIĆ	519	Radomir RADIŠA	193
Miroslav JANAK	181	Radomir SLAVKOVIĆ	103, 193
Miroslav MIJAJLOVIĆ	477	Radomir VUKASOJEVIO	
Miroslav PAJIC	365	Radovan ĆIRIĆ	103
Miroslav PILIPOVIĆ	217	Radovan PUZOVIC	41
Miroslav PLANCAK	301, 315, 495	Rajko ĈUKIĆ	469, 473
Miroslav R.		Ranko BOŢIĈKOVIĆ	293
RADOVANOVIC	69, 413, 431, 435, 439	Ranko RADONJIĆ	293
Miroslav TRAJANOVIĆ	209, 243, 335, 355, 399	Ratko GATALO	113
Miroslav VASIĆ	129	Remigiusz LABUDZKI	171
Miroslav ŢIVKOVIĆ	139, 289, 343	Robert CEP	133
Mišo BJELIĆ	151	Rok JUSTIN	489
Mladomir MILUTINOVIC	301, 309, 499		
Najdan VUKOVIĆ	389	\mathbf{S}	
Natalia POZILOVA	449	S. BOROJEVIC	117
Nebojša ĈOVIĆ	389	Sandira ELJŠAN	249
Neculai NANU	273	Sandra SOVILJ-NIKIĆ	523
Nedim GANIBEGOVIĆ	249	Saša ĆUKOVIĆ	189, 235, 347
Nemanja VASIĆ	121	Sasa RANDJELOVIC	305
Nenad D. PAVLOVIĆ	385	Sasa ZIVANOVIC	381
Nenad FILIPOVIĆ	331, 359	Sebastian BALOS	91, 231
Nenad GRUJOVIĆ	319, 323, 327, 403	Sergej ALEXANDROV	301
Nenad GUBELJAK	481	Simo ŠALETIĆ	339
Nikola KORUNOVIĆ	209, 335, 351	Slavenko M. STOJADIN	OVIC 167
Nikola LUKIĆ	217	Slaviša ĐAĈIĆ	289, 503
Nikola MILIVOJEVIĆ	327, 403	Slaviša PLANIĆ	163
Nikola SLAVKOVIC	381	Slobodan MITROVIĆ	519, 393
Nikola VITKOVIĆ	209, 243, 351	Slobodan TABAKOVIĆ	113
		Sofija SIDORENKO	227
0		Srbislav	
Obrad SPAIĆ	37	ALEKSANDROVIC	277, 289, 421, 469, 473, 503
Ognjan LUŢANIN	315, 499	Srđan MLADENOVIĆ	159, 163, 431
Olivera ERIĆ	91, 231, 457	Srđan VULANOVIĆ	155
Ondrej STAŠ	369	Stanislaw LEGUTKO	523
		Ştefan POTÂRNICHE	413

Stevo BOROJEVIĆ Stojanka ARSIC Suzana PETROVIĆ	197 355 189, 235, 347
T, U Tadej TAŠNER Tanja LUKOVIĆ Tatjana PUŠKAR Tatjana PUŠKAR Tomaţ PEPELNJAK Tomislav TODIĆ Tomislav VUJINOVIC Uros ZUPERL	253 189 309 185, 315 499 99 277 29
Valentina LATIN Velibor MARINKOVIĆ Velimir KOMADINIĆ Velimir TODIĆ Veronika FECOVA Vesna MANDIĆ Vesna RANKOVIĆ Viacheslav KRUTSKO Victor GAIKO Vid JOVIŠEVIĆ Vidosav D. MAJSTOROVIĆ Vito TIĈ Vladan RADLOVAĈKI Vladimir BORODAVKO Vladimir ČARAPIĆ Vladimir KANJEVAC Vladimir KVRGIĆ Vladimir MILIVOJEVIĆ Vladimir SIMIĆ Vladislav BLAGOJEVIĆ Vukić LAZIĆ	125 45, 285 129 109 181 297 319, 403 453 453 453 197 5, 167 507, 511 155 453 129 323 129 327 15 239 377 277, 465, 469, 473
Z, Ž Zdravko BOŢIĈKOVIĆ Zdravko KRIVOKAPIĆ Zoran DIMIC Zoran JOVANOVIĆ Zoran JURKOVIĆ Zoran MILJKOVIĆ Zoran SPIROSKI Zvonimir JUGOVIĆ Zvonko GULIŠIJA Ţarko SPASIĆ Ţeljko EREMIC Ţeljko RAIĈEVIĆ Ţivana JAKOVLJEVIC	293 37 381 347 57, 297 389, 531 175 103, 193 289 257 461 339 365

CIP - Каталогизација у публикацији Народна библиотека Србије, Београд

621.7/.9(082) 621.7/.9:669(082) 681.5(082) 005.6(082) 004.896(082)

INERNATIONAL Conference on Production Engineering (34; 2011; Niš)
Proceedings / 34th International
Conference of Production Engineering,
September 28-30. 2011, Niš, Serbia;
[organizer by] University of Niš, Faculty of
Mechanical Engineering, Department for
Production, IT and Management; [editor,
glavni i odgovorni urednik Miroslav
Trajanović]. - 1. izd. = 1st ed. - Niš:
Mašinski fakultet = Niš: Faculty of
Mechanical Engineering, 2011 (Niš:
Unigraf-x-copy). - XX, 548 str.: ilustr.;
30 cm

Tekst štampan dvostubačno. - Tiraž 150. - Str. VII: Foreword / Miroslav Trajanović, Velibor Marinković. - Sergey A. Klimenko: str. 539. - Velimir Todić: str. 540. - Velibor Marinković: str. 541. - Napomene i bibliografske reference uz tekst. - Bibliografija uz svaki rad. - Registar.

ISBN 978-86-6055-019-6

- 1. Mašinski fakultet (Niš)
- а) Производно машинство Зборници b) Метали Обрада Зборници c) Системи аутоматског управљања Зборници d) Управљање квалитетом Зборници COBISS.SR-ID 186256140