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MATHEMATICAL MODEL FOR GENERATED HEAT ESTIMATION
DURING THE PLUNGING PHASE OF FSW PROCESS

UDC 621.791.1
Summary

"™ The friction stir welding (FSW) process slarts when the welding too! rotates and
plunges into the base material. Significant amount of mechanical energy given 1o the welding
tool is used 1o overcomc resistances m the base material and as a result, this mechanical
encrgy transforms ino heat. Experimental swudies have shown that extreme values of the
resistance forces and maximum engagement of the welding machine power appear during
plunging. This leads to the conclusion that the FSW process bas o fulfil welding
requirements as well as to overcome reststances. Since i is expected thai maximal power
consumption during FSW appears when the maximum value of heal is generated, the FSW
process has to be designed according 10 this power consumption. An adequale and precisc
mathematical maodel for generated heal estimation can be used for the FSW process design
The verification of the mathematical mode! validity can be done by comparison of the
analybca) with the experimental vajues of consumed power.

Kev words: Sriction stir welding, heat generaiion

1. Insroduction

Fricuon stir welding (FSW) 15 a solid siate welding process predominantly used for
jorning materiats difficult io weld by applying some of conventional processes. lis application
is mainly connected with (he welding of aluminivm, aluminium alloys and other sofi
metals/alloys [1]. In comparison 1o other welding processes, FSW delivers the smallest
amount of energy to the base metal, which results in the smallest deformation in the structure
of the base metal. However, FSW is still an unconventional welding process because of the
complexity of application and the need for long welds in order 10 have greal productivity.
FSW is used for plate-shaped parts.

In FSW, a cylindrical, shouldered ool (Figure 1) with a profiled threaded/unthreaded
probe 15 rotated al a constant speed and fed ar a constant traverse speed into the joint line
between rwo plales (base material), which are bulted together. The paris are clamped rigidly
onto a backing plate in a manner that prevents the abutting joun faces from beng forced apart,
The length of the probe is shghily smaller than the required weld depth with the goal of
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cnabling comact between the tool shoulder and the base material when maximal plunging 1s
achieved. The probe is moved against the weld-joint line or vice versa.
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Fig. } Welding toal

FSW was patented mn 1997 [1] and in 1992, the industnal application of the process
started. At the beginning, the application of FSW based on experimental studies only Studies
stmed al optimizing lechnological parameters of the FSW process. Nowadays, numerous
scicutists conduct experimental studies in order to improve process parameters, by improving
the welding tool, weld quality etc.,, however. Al the same ume, the development of
mathematical modeis of FSW also took place. Previous papers on modelling the FSW process
include analytical (thermal) models, finhte clement (FL) based sohd thermal and thermo-
mechanical models, fluid dynamic models, and stress and strain conditions of the base
material. Some of these models include heal generation from the FSW ool and assumptions
are made regarding lhe imerface condition, which all have their drawbacks and limiwations,
Santiago et al. [2] introduced a model of the FSW process, using a finiie element based
program with g reproduction of the temperature ficld and volume flow in the FSW process.
Numerical results were compared with experirmental results and discussed. Gould et al, {3]
developed an analytical heat transfer model for FSW based on the Rosembhal equation {4],
quast-stationary lemperature field over a semi-infinite plate with 2 moving heat source. Chen
and Kovacevié {5, 6] carried out thermal and thermo-mechanical analyses using finite
elements. These analyses are based on a heat source model. without considering the thesmo-
mechanical coupling generated by the plastic How. Song and Kovacevie [6] investigated the
influence of the prebeating (dwell) period on the temperatere fields. They assume the
existence of sliding condition between welding wwol and base material and use an effective
friction coefficient and experimentsl plunge lorce in the heat source expression. Ulysse {7]
presented ID modelling of FSW using fully coupled thermo-mechanical viscoplastic flow
models with good results where plashc deformations commonly occur Due to geometric and
kinematic characieristics of FSW, the problem 1s mainly 3D. This kind of modelling was done
by Colegrove et al. {8} by using the "CFD package FLUENT", where a coupled thermo-
mechanica) viscoplastic model for aluminium material was solved and promising results were
obtained as regards the material flow distribution. Nandan cu al. [9, 10] reported results of a
stainless steel FSW simulation by using this kind of modals with good agreement between the
compuied temperature field and the experimental data, showing the versatlity of the
viscaplastic flow models to represent large deformation processes in FSW. (n the model by
Chao el al, |11}, heat generation comes from the assumption about the existence of sliding
friction, where Coulomb’s law 15 used 10 estimate shear or friction force at the interface. The
pressure at the welding tool-base material contact is assumed to be constant, thereby enabling
the radially dependent surface heat flux distribution as a representation of the friction heat
gencrated by the Lool shoulder, but neglecting heat generated by the probe surfaces. Frigaard
et af (12, 13] modelled the heat input from the ool shoulder and the probe as fuxes on
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sguared surfaces at the top and sectional planes on a 3D model and conirol the maximum
allowed temperarure by the adjustment of the friction coefficient at elevated temperatures,
Russell et al. [14] based heat generalion on 3 constant friclion stress at the interface, equal o
the shear yield stress at an adequate temperature, which is set 10 app. 5% of the yield stress at
room temperature. The heat input 1s applied as a point source or line source as m the normal
version of Rosenthal’s equations, but the solution is medified 1o account for the limned extent
of the plate width. Colegrove [15] used an advanced analytical estimation of heat generation
for tools with a threaded probe to estimate the heat generation distribution. The fraction of
heat generated by the probe is estimated 1o be as high as 20%, which leads to the conclusion
that the analytical estimated probe heat generation contribution is no: negligible. Along with
the mathematical siress model, Colegrove [15] developed a material flow model, which
addressed the influence of threads on the material flow. An advanced viscous matenial mode)
was introduced and the influence of different contact conditions preseribed as the boundary
condition was analysed. A thorough presentation of analytical estimates of heai generation in
FSW is also included in [16]. Xu et al. [17] intreduced a 2D solid mechanical FE model using
ABAQUS Explicit and & 2D CFD model using Fiuent, and the main objective was to reveal
the materal flow around the probe. The FE model ncluded two differem submeodels with
different contact conditions at the probe/material interface: the shding interface and the
friclional contact model. The materizl surrounding the probe was cxposed 10 a temperature
field obtained from the experiment, with the calculation of yield stress {or the thermal
material response, The flow results were gualifatively compared wit the experimental llow
visualization via the marker insert technique. Some of the limitations of the models are the
mussing influence of the tool shoulder and the lack of heat generavion. The 2D CFD model
gave similar results as the two-dimensional FE model, which used a boundary condition at the
tooi/metal interface. Khandkar et al. [18] introduced a torque based heat inpur model, where
the 10rque/power known from experiments was used in the expression for the heai source.
Inverse modelling for the estimation of the friction coefficientheat source is not necessary as
opposed 1o the models presented by [6, 11, 14, 15]. This enables an investigation into other
important parameters, e.g. different heat wansfer coefficients at the bottom of the base
material, base material’/backing plate gap conduclance and backing plate conductivity.
Similarly, Shi e1 al. [19] used the expernimentally observed mechanical power as tnput in a
thermo-mechanical 30 FE model. The model investigated the influence of toei loads (1orque
and plunge force) on residual stresses

Having recognized generaled heal as one of the most imporiani parameters ol FSW,
numerous scicnlists have been working on an adequate mathematical model capable of
describing the heat generalion process withm FSW more accurately, Probably, the greatest
difficulty in the development of such a mathematical model is existence of numerous
paramelters that appear and describe the friction process {iriction coelficient, contact pressure,
stress, strain, temperature, et¢.). Parameters are mutually connected and dependent one on
another. These dependences are mostly complex and i most of the previous studies they were
replaced with numerous approximations which gave some resuits that are limitediy usable.

This paper analyzes heat generation during the plunging phase of the FSW process
without a deeper analysis of the heat generation physics, assuming conditions on the welding
1ool-basc material contact, giving a detaifed geomeirical and time dependent analysis of the
friction contact between the welding ool and the base matenal. Based on that analysis, 2
possible mathematical model with analytical expressions for the estimation of heat generated
in the plunging phase is presented. These analytic results are compared to the results given by
Schmidt ei al, [20).
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2. Phases of FSW

FSW consists of several active phases m which the welding tool and the base material
relatively move, ane to another, throughout every phase (Figure 2). During the [irst phase, the
welding 100l plunges into the base matenal at the slarting point of the joint line. When the
welding 100l reaches the maximum plunging depth, the plunging phase 15 finished and the
dwelling phase starts. During the dwelling phase, the welding (ool, inserted into the base
matersal, sotates but it is held steady relative 1o the base maiterial. The mechanical contact
between the welding too! and the base malerial generates heat by tribological processes. Heat
dissipaies into the surrounding space. This results in the softening of ihe base material. When
the material becomes soft enough the welding phase starts — with transversal movement of the
welding tool or the base maierial along the joint line. The welding phase lasts until the
complete distance of the weld is covered. If necessary, the welding tool siarts the second
dwelling phase to stabilize the welding process and 1o finish welding, Afier the second
dwelling, the welding tool is pulled out from the basc material, the pulling out phase, and the
FSW process is over.

n - rounds per minute

welding too! vevelocity
—l ! in z direction
)
H = wEy=0 z
' ! . ol L wrEwEu=(
ase matertal -,
) I
b) First dwelling n

welded zone
w= ==l

: ik

¢) Welding dj Second dwelling
n
<_ %
ve=w =0 ! weld base material  exit Aole end point
z Vr — . . b i r
i siart poini

welded zone . .
| ' l

&) Pulling owt M End of welding
Fig. 2 Phases of FSW process

o The welding phase is the only productive phase in ESW. All other phases prepare or
finish the weld creation and their influence on the quality of the weld is notable.
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3. Plunging phase

At the beginning, the welding 100 is positioned above the starting poinl on a joint line
and rotaies (Figure 2, a). The first contact between the welding tool and the basc malenal is
achieved berween the probe tip and the top surface of the base material. As a result, fnction
between them oceurs and it opposes the rotation of the welding tool.

This frictional contact consumes some amouni of mechamcal energy given o the
welding tool and transforms it into hear. This heat dissipates nio the surrounding material and
increases the temperature of the base material. The base matenal is loaded with the plunging
force £ (1) and the worsion momentum of the welding ool M (¢). These loads stress the base
material; the base matenal suffers contact pressure (normal siress) and shear stress (tangent
SITESS ).

Since the process of [rictiop appears berween 1wo metallic bodics, the welding tool and
the base matenal, Bowden and Tabor [21] suggest that the friction coefficient x on such a
contact can be given as:

pu=tip ()

where: 7 — langem shgar stress of the sofler material {in this case: welding picces) and p -
contact pressure (normal stress at the contact of the welding 100) and the basc matenal).

1f plunging force F (1), variable during time /. is deploved on the welding 00l over the
probe wiih a diameter of ¢, considering the cotation of the welding tool to be constant (anguiar
rolation speed @ = const.), comact pressure on radial distunce r from the rotation axis is [22]:

Fli d
p(r.1)=—-(-)—-——.0£r<rp,,05r£—- (2)
d Il dT ) 2
27 ) =] -r
2 V2
where /, - duration of the plunging phase.
The medran value of the comact pressure p,, (/) on 1he contact is:
4-F (1)
Polt)=——— 0211, (3)
[ a.x F

At the beginning of the plunging phase (Fig. 3, a), the plunging force pushes the probe
into the base material. The base material elustically deforms but there is no significanl
penetration of the welding wool; the contact pressure has not reached the values of the base
material elasticity limit {considered equal to the yreld strenglh &) and the material is
capable of resisiing plunging without any or with minor plasiic deformations, An increase in
the plunging [oree results in an increase in the contact pressure and in some areas the contact
pressure exceeds the value of the elasticity limit and the malerial 1s plastically deformed (Fig.
3, b). However, Lhese areas are surrounded with the elastically deformed material that is
resisting plunging and intensive plunging of the welding 100! sull does nat exisi. A further
increase in the plunging force intecnsity increases the contaci pressures above the value of the
clasticity Jimit on 1he compleie contact area. This makes the complete area under plastc
deformation but the plunging depth of the welding tool still does not reach a notable value.
Completely plasucized and a bit softer than at the begimning of plunging, the material sl
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resists the plunging because of the surrounding elastically deformed area that 15 capable of
resisting deformation. This suggests that plunging can be achieved only when the value of
contact stress becomes much higher than the elasticity limit and the area ot contact and the
area near the comacl becomes completely plastic,

J il

v. 1
B "
! e e
I v=v =0
+ ' ' — F
al . al . gl d_
N My J’ff B
. = _Tﬂ =, 3 ¥ - P ' r‘u‘w = >
RIS I

P(ﬂ r)}Gue*!d\\

]
]
-

plr 15 O™

L)

[J(?‘\ g 0_\ Jelit
“"“—-—

ay ng plastic deformation and no notable plungmg b} some plastic deformanons and some plunging
Fig. 3 The contact pressure distribuiion

Bowden and Tahor [21] have shown that if the median contaci pressure p,. (1) hasim
intensiy less than 1 5 - Mg, the matenal in conlact will be stressed purely elastically (Fige
43 If the median contact pressure p, (¢} has intensity greaier than 1.5 « O,y the matenal
cnters Lhe plastic condition but stitl there is sufficient elastic material to prevent the plunging
of the tool. When the mean comact pressure reaches the value of g, () = (2 = 3) - G (21,
23, 26). ihe material becomes plastic and the welding tool plunges into the base material
(Figure 4). This value of the mean contact pressure has the values of p., (1) = (2.1 + 2.3} - ol
for alumimum and aluminium alloys [21, 23].

]

pure elasiic conditions

pn(l):l . S’ Gy.ldd
pm({)=(2+3)- Ot

elastic-plastic conditions

pure plastic conditions
P

Fig. 4 Schemwe of elasuc and plasuc conditions in matersal during plunging comact [24]
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Yield strength (elasticity Jimit) is a property of material that is not dependeni on loads
{e.g. pressure) bul it changes 1ts value when temperature and the piastic strain rate of the
malerial change. As mentioned carlier. the welding 1ool rotates while it plunges into the base
material and the [riction contact consumes part of mechanical energy and tansferms it into
heal. Heat changes the temperarure of the base material and the value of the yield strength of
the base material changes in the contact area, us well. For pure elastic and/or elastic-plastic
conditions of the pressed maienal, yield sirength is fonctionally dependent only on the
temperature (T) of the matenal in the contact area [20]:

o—_t.r'ei':f = O—J'fefcf {T) . (4)

The combinagon of pressure and rotation of the welding 100l induces shear stress in the
base material in a layer of material near the contact surface. Comparing the von Mises yield
criterion n the umaxial tension {25] with pure shear, the yield shear strength 7.0 can be
estimaied as:

T}u’fﬂ' =T\ eld 'H\/E (5)

4. Heat generation

« <" During the contact of two bodies that are pressed and relatively moving one o another.
heat is generated on the contact surface or in a layer of the softer material close to the contacy
surface. In both cases the unifornmy contact shear SiFess frpnr APPEATS,

The welding tool has three active surfaces that are involved in heat gencration: the
probe Lip, the probe side and the shoulder tip (Fig. [). Total heat generaied on the probe 1ip
(pt), the probe side (ps) and the shouider tip (s) can be eshimated as (20, 27, 31)

2 ay
QP: = E'R'a)‘ foantacr” 5 : (6)
T
a
Qﬁch =270 Tpgppae (?] h, (7}
i 3
2 DY {d
0O, =E-J‘? R [7] _[E] (V- tana) (8)

Heai generation happens mainly during rwo physical processes: sticking (deformation)
and sliding (adhesion) [20, 26, 27, 28]. In both cases. contact shear Swess fyom 18 Involved,
but it has different physical nature for beth processes.

If sticking appears, contact shear stress can be estimated as:

Teoniaer = Cwield = O yietd ! ‘6 N

And if sliding appears, contact shear stress can be estimated as:

Teomtars = H P (;) (ID)
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5. Experiment on FSW heat generation

Schmidt et al. [20] provided some data aboui FSW gathered during the cxpeniment. The
welding tool used in the experiment (Figure 1) had an imerchangeable threaded probe of d= 6
mm in diameier and 2 maximal probe length of H,.. = 6 mm. The shoulder ol diamcler 2 =
18 mm had a cone angle of @ = 10° Thread pitch was £ = 0.8 mm and 1 was left oriented.
The base maicrial (Fig. 5) was made of aluminium alloy 2024 T3 [32], #= 3 mm thick,
B/2 = 60 mm wide {each) and L = 150 mm long. The experiment was conducted on an
adapted CNC mitling machine with the rolation speed of # = 400 revolutions per minute (# =
41.87 rad/s), with the iransversal welding speed of v, = 2 mm/s. The weld has been crealed on
a length of { = 105 mm. starting at the point on the joint line L3 mm away [rom the edge. The
data acquisition system, mounted on the milling head, monitored torque M () on the welding
1o} and plunging force £ {¢), both along z-axis. The valuc of expenmental power £ (17 has
been calcutated by integrating (he torque and the rotation speed.

AL 2024 13
Y Achvancing slae
Ihuckrass 3 rmim
I Bt rcAe Phurge position
70 P _domine X N Ty
- ‘ T UL Y R ...,-..-ho'ob&_...: iy B P
Wold speed
7 s A00 RPM
, Retreahng sce
L 105 rmm 15 nm
150 mm

-—

Fig. 5 Work mece geometry and welding parameters [20]

Durations of the FSW phases were [20]:

- plunging: from 05 to 8.7 5, duration 1,,= 8.7 s;

—  [irst dwelling: from 8.7 s (0 13.7 5, duration: /4. =5 s;

- welding: from 13.7 5 10 606.2 5, duration: 1. = 52.5 s

- second dwelling: from 66.2 510 71.2 s, duration; ¢4, = 5 5;

- pulling out: this value has not been recorded,
The maximal iemperature of the base material was monitored on the centreline on the
top surface of the base material, and 11 was 7., = 400 °C during the FSW process [20].

TRANSACTIONS OF FAMENA XXXV-1 (201 1)

46

u

Mathemar
during the

6. Ana

Ev
the slidin

where: &

Far
expected
contact b

Wh
matenal,
plunging
capable ¢
valuc of 1

where k
Usi

Tlm
conlacl s

Pl
15 difficu
gencrale
experim
materia)
Table ).

Table 1 1
7,

el

TRANSA1




! Hzat Estimation
rof FSW Process

penment, The
probe of o= 6
diameter O =
i left oriented.
3 mm thick,
wducted on an
7 minute (4 =
e created on
the edge. The
o the welding
rwer P (#) has

ireline on the

s [20].

OOXV- {2011}

Mathematical Mode! for Generated Heat Esumaiion M. Myjajlovié, D. Mildic,
dunng the Plunging Phase of FSW Process D Siamenkovic, A, Zivkovié

6. Analytical estimation of generated heat during plunging phase
The total amount of generated heat O is a sum of heal generated on all active surfaces:

Q= Qi+ + Q- (n

Every constiment ol the toial generated hear & {from equauons 6, 7 and 8) is a sum of
the sliding based component (0" and the sticking based component Q%

O =(1-8)-00 +6-Q0. (12)
Qps =(1-8)-Q0 +5-03, (13)
G, =(1-0)-05 +5-¢5. (14)

where: & - dimensionless slip rate, coniact state variable which defines the contact condition.

For §= | pure sticking condilion is expected, while for &= 0 purc sliding condwon is
expected, 0 < §< 1 —a combination of sticking and shding condition is expecied dunng the
contact between the tool and the welding plate [20].

When the plunging phase starts and the welding tool touches the top surface of the basc
materal, only the prohe tip (pr) generates heal, The base material is capable of resisting
plunging and there is no intensive plastic deformation. At this moment, the probe tip is only
capable of sliding over the basc material (§= 0). This condition will remain until the median
value of the comact pressure does nol reach the ¢ritical value:

pm(")gk'oﬂefd‘ (13

where k = 2.17 for aluminium alloys {26].
Using equations 3 to |15, the total generated heat can be estimated as:

v | T
o
Q= Q,m = Q;)f = E‘w'-u'F(!)'d' F(;) £ _4- & dz T i (T) (16)

The coefficient of iriciion is considered 10 be constant and equal to x# = 0.3 for all active
contact surfaces as a weak approximation of a realistic friction process [28, 30].

Plunging force £ (1) is a characienistic of the machine and the FSW process itself and 1
is dilficult to determine the correct intensity and behaviour analytically. In this case, for the
generaied heat estimation the experimental value of the plunging force, momnored dunng the
experiment, is taken [20]. Yield strength &.,..ris changing as the temperature of the basc
material changes. Thermo-mechanical properties of the material 2024 T3 are given in the
Table 1.

Table I Thermo-mechanicat properies (no plastic strain) of maierial 2024 T3 [33]

T,°C 24 | 100 | 140 | 204 | 260 | 316 | 371 | 400
oo Nimn' | 345 | 331 | 310 | 138 | 62 | 41 | 28 2
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When the median value of the contact pressure overcomes critical pressure p, (1) > & -
Tt the plunging of the welding tool into the base materia) becomes intensive. The intensive
plunging farces other achive surfaces (probe side, shoulder tip) to become involved n heat
generalion.

The probe forces into the base material, the plunging depth of the probe 4 (¢} incrcases
(Fig. 3, b). and the probe pushes some of the sofiened base material upwards. The malerial
being pushed upwards by the probe slides over the prooe side and deposes under the shoulder
lip. At the beginning of the intenstve plunging the shoulder tip has no contact with the base
maicrial or the deposed material. An increasc in the plunging depth 4 (1) and growing volume
ol the deposed material cventually put the shoulder tip in contact with the basc material. From
that moment. the shoulder Up constantly slides over the material and partially sticks to it.

It is necessary to make some assumptions in order to estimate heat generated during the
intensive plunging:

~  Dimensionless slip raie Tor the probe Lip and the shoulder tip is § = 0.5 - sticking

and sliding have the same influence in heat generation on the probe / shoulder tip,

~  Dimensionless slip raie for the probe side is § = 0.0 — the probe side does pure

shding,

~ Shoulder tip will engage in heat gencration when the plunging depih reaches the

value of h (£) = 0.67 - &, that is approximately / = 7.6 s after the beginning of
olunging [26].
Finally, total gencrated heat Q equals:

d* o x
Q:Qp; +Qﬁs +Q.cru F(’)}k J_x'fffd(T}' 4 ' “?}
where:
.)"+ < 6

0p =2 Lo P B2 8 00, (%)
O =Q:.‘J‘ :2-;1-@-!"(!)-!1(1’). (a9

(1*6‘*‘]~fo+5'Qf,’=0, ,‘1[:]<§'h
Qs.r=%{d);;"+ ;;=ﬂ-(1+la]’]ﬂ)‘m_(D3_d3). p.4,F(I)+O'_\.mld é (20}

| 2 24 dtor N RGeS

6.1 Temperature ol base material during plunging phase

Temperature of the base material during the plunging phase can be modelled as a 3D
heat transfer problem with a moveable heat source [6, 29]. The problem of the iemperature
field determination starts with the heat equation:

g ST Ghm, e
[J_C‘EI:’{_{(T &?r &) .

- +—5 |+ .
ot L o o T J
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where: p= 2700 kg/m* — median density of aluminium alloys: ¢ = 900 Ji(kg-°C) — specific heat
of aluminium; 87/d — rale of temperature change at a point over time; 4 = 300 W/Am-°C) -
thermal conductivity coefficient for aluminium-air contact, #T/ax", & Ty 81187, - second
spatial dernivatives (thermal conductions} of temperature in the x. ), and z directions,
respectively: g,, W/m?® — volume heat density.

Fig. 6 Duscrete model of base matenal (an example)

Valume beat density g, depends on the total amount of heat O given 10 the velume of
malenal ¥:

g =% 22)

The heat equavion can be selved nuimencally, which requires the discretization of the
base matenal volume, the discretization of ttme and the scuting up of initial and boundary
conditions for the base matenai. An approximation: ail thermal coefficicnis used during heat
equation sclving arc considered (o be constant values.

Initial conditions for the base matenal assume temperamure balance between the base
material and the surrounding:

T(x,5,2.),_ =Ty (23)

where 7o~ 20 °C — imual temperature of the base matertal apd the surrounding,.

Boundary conditions for the base malerial are dilferent on surfaces whereas lhe base
material has contact with atmosphere or with another solid body (Figures 7 and 8).
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s T(z=h, 1)=T,

0 Tp.a(Z.

B

Tn=ng, £=T» %

i

Tin, 1)
o o H=X, VY 2
Fig. T Boundary conditions: metal-air contact Fig. 8 Boundary condinens: metal-metal contact

Mathemnatica! expression of the boundary conditions for metal-air contact is:

o7 )

a7 ar
“l'[g‘;l--o =a{T,o-To} _,1.(&6?)1’:3 =a{T,,.5-Ty). (25)
-4 [f;i)rh =a (T, Ty (26)

where! @ = 15 W/Am*°C) - convection heat transfer coefficient for aluminium-air contact, T,
o Tpeys Ty 2~ temperature on the surface normal 10 x, y and z axis, respectively.

For = = 0, where the welding plaie has contact with the working tabie of the milling
machinc, the mathematical expression of the boundary conditions for the metal-metal contact
are:

AT T,
(3,
o=h =h

where A, 15 thermal conducuvity coefficient for aluminium-steel contact and Ty 1s
temperature of the milling machine working 1able {sice! plate).

However, this boundary condition set will make the solution of Equation 15 more
complex and the approximation set that will be used is:

T
"I[T} = Qgim ‘(Tp.:zh _TO) (28)
CE )::(}

where g, = 3000 Wf’(m"-"C) — convection heat transfer coefficient for aluminium-sieel
contact.

The numerical solution of heat equation for the proposed initial and boundary
conditions is a set of temperatuses (7T,.,:) m a specific, discrete moment of time (1), for
discrele points on the welding plate (coordinates: x, y, z).

6.2 Aralyucally versus cxperimentally generated heat

Figure 9 shows temperatures of some specific points on the base material. The
lemperatures are calculated for discrete moments of time during the plunging phase. The
coordinates of the points in the base matenal are in agreemen! with the coordinate system

given in Figure 6,

50 TRANSACTIONS OF FAMENA 2X3{XV-1 (2011}

Ip

Mathems:
durng t

Fig. §
C

strain ¢
given i
el de

F
power ¢

63 D

Y
{Fig. In
charact
experin
experin
the exp
to the f
analytic

7. CC

H
contact
welding
this imy
parame
generat
0 reve
underst
analytic
most of
recogni
FSW m
welding

TRANS/




mimation
[ Process

{24)

(25)

(26)

acl, T,

milling
ontact

{27)
Tpp s
© more

(28)

o-sicel

andary
0, for

ySIem

2011}

Mathematical Model for Generated Heat Estimation M. Muaylovié, D, Milti€,
during the Plunging Phase of FSW Process D. Stamenkovié, A. Zivkovié

300 =
= x= 15, y=50. =3 B

+- =15, y=50, =15 &8
250 1 o 5= |5, y=45, =3 = — o gt e
————x= 15, y=43 =135 R R
| = =10, y=50, =3 o & ¢

200 = 10, y=30, z=1.5 oA
U ceeeeee e 10, =45, =3 ‘,"ﬂ,f-.'
o
fm

x= M0, y=43, 7=1.5 B o LA L

D053 152253 354 455 556 657 758 8509
t{s}

Fig. & aAnalviically estimated temperatures of some specific points on base matenal during plunging phase

Considering sliding as a dominant mechanism of heat gencration, assuming that plastic
strain can be disregarded (for Lhe plunging phase), using temperatures given in Fig. 9 and data
given in Table 1, it is not difficult to analytically estimate expecied values of yield strength
Gruerq during the plunging phase.

Fig. 10 shows the values of the monitored plunging force £ (¢}, the monitored engaged
power ¢n the welding 100l P (r) and the analytically esiimated generaied heat O (¢).

6.3  Discussion of results

When comparing the analylically estimated generated heat and the experimental power
{Fig, 10), it is obvious that there is sigmficant similarity between them reparding shape,
character and values. The wrend of the analytical power 1s the same as the wrend of the
expenmental power. The highest value of relative emor between the analylic and the
cxpenmental power is 19.2%. The analyucally csirmated heat has slightly higher values than
the experimental heat almost throughout the compleie plunging phase. This can be aunbuted
io the facy that the ¢fTiciency factor of the machine and transmission are neglecled dunng the
analytical estimation as well as 10 the mentioned approximations.

7. CONCLUSIONS

Heat generation during FSW is probably the most important product of the intimate
contact between the welding tool and the basc material - mechanical power delivered 1o the
welding tool is in greal amount Iransfermed inlo heat. However, it 1s very difficuli to explain
this important physical process mathematically because it depends on numerous tribological
parameters that are murually entwined and changing. Recognizing the imporiance of heat
generation for FSW, numerous researches and investigaiions have been conducicd with a goal
ta reveal some of the tribological processes that appear during FSW and to advance the
underslandmg of the FSW process and heal gencration, Yartous mathematical models for the
anatytical estimation of heat generation have been developed and this paper has summarized
most of them, developed some new idcas. and applied them on FSW. The plunging phase is
recognized as the phase in which force and power reach their maximum and the complete
FSW process has to be modelled according to the requirements of the plunging phase. The
welding machine has (o be capable of overcoming resisiances during the plunging phase
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\

F(KNE P, O [duw]

— Plunging force F(1)

—— Lxperimeal power P()

—— Arnalytcally estmated generated heat Qi

e e e

0 b3 10 L5 20 25 30 <] 35 40 45 30 55 60 65
1|5

Fig. 10 Experimental plunging force, engaged power {20] and anatytically generated heat

Stiding is a dominant mechanism for heat generation during most of the plunging phase,
Shiding loses its dominance when the contact pressure between the welding tool and the
welding plate reaches a critical value.

The assumplion thal sliding and siicking cqually {J = 0.5) influence the total amount of
generated fiear @ (/) 1y yuestionable. Some acnve surfaces are minimally involved in
deformation during some penod and al some other moment they are completely invelved in
sliding. Dimensionless shp rate & should not be considered as a consiant vatue,

The analyilically estimated maximal generated heal. together with the maximal plunging
force, both achieved during the plunging phase, can be used as design values of the FSW
process. The maximal value of the needed plunging force £, (1) during plunging can be
eshimated as a value when the median contact pressure p,., {f) exceeds the critical contact
pressure & - gy, This value Fpe {f) 15 used for the calculation of the generated heat Q, the
temperature field of the base material {temperature 7) and the maximal value of the generated
heal Q... When the values ol the maximal plunging force Fo, (1) and the maximal engaged
power P = (O, are farmltar values it is not difficult 1o select a machine capuble of fulfilling
requirements of a selected FSW process.
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BROADENING OF THE REPERTOIRE OF FORMS FOR SPACE
STRUCTURES BY USING FORMEX ALGEBRA

ubDcC 512.7
Summary

Remarkable progress in computer aided technigues has madc possible for architects and
engineers (o design and realize more and more complicated and innovauve structural forms with
ease ang elegance. The visualization and analysis ol any structure, including a space stnucture,
on a computer requires informanon about various aspects of the structural system. Ths
information could be initially wsed for graphical visuahzation of the structure, or may be
submitted as input data to an analysis package. Therefore, it is nmoportant 10 have a convenient
system for manipulating and changing varous aspects of the form o examine different
solutions. Formex algebra is one such mathematical system. The concepis of lormex algebra are
presented in this paper in relation with the Formian, which is in facl the programming language
of formex aigebra. This paper presents a3 methodology for generating and manipulating space
structure forms using computer aided techwiques based on formex algebra

Key words Jormex algebra. Formian, struciiral forms. retronorms

1. Introduction

For large and complex siructural forms, the sheer volume of information 10 be handled
can make data generation a time consuming and a difficult task. To overcome (his problem,
suitable systems have been developed by which computer graphics and data generation for any
type of structure can be done conveniently Formex algebra is one such mathematical system,
The ideas of formex algebra can be applied (o many braches of science and technology: in the
present paper, they have been described in relation 10 a variety of space stucture configurations.

Configurations may be described using numerical models In particular, when digital
computers arc involved, the internal representation of a configuration is bound in terms of a
numerical model. The term “configuration processing”™ is used te mean “creation and
manipulation of numeccal modeis representing configurations™. Formax aigebra is a
mathenatical system which 1s ideally suited for configuration processing. In using the formex
approach, a “'formex™ (plura) formices) is used to represent a configuration. The main role of a
formex is 10 provide mformation regarding the constitution of a configuration. In addition, a
formex may be used to provide geometric mnformation about a conligurabion in terms of
coordinates of nodal points. The concepts of lormex algebra are discussed in this paper together
with the Formian [1]. The Formian is s surtable computing software that can solve problems ol
computer graphics and data generation 1n an effective and elegant way (2], [3}.
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{4-fold) to Editor-in-Chief or Co-Editor. The manuscrpts must be typewritten, double-
spaced with 3 cm margins on one side of A4 paper. The pages and appendices must be
numbered.

The title page has to comprise the title, the author(s) and the anmhor's affiliation and full
address. Comespondence will be semt to the first-named author, unless otherwise
indicated.

The absiract must not exceed 150 words in length with 2-3 keywords.

Tables and Figures should be placed on separate sheets, with an indication in the text a3 0
their appropriaie placement. A
Follow this erder when typing manuscripts: Tile page, Abstract, Keywords, Main text,
Acknowledgements, Appendix, References and then Capiions for figures and tables.
Mathematical symbols and formulae should be typed. Particular care should be exercised
in identifying alt symbels and in avoiding ambiguities.

References to published hiterature should be cited in the text usmg numbers in squarc
brackets, e. g. {1], and arranged in alphabetical order m & Refercnce sectiomn.

. Reviewers will be asked to provide comments on the manuscript, which will then be

forwarded to the authors. The reviewing time will normally be 6 10 10 weeks.

. ARer acceplance, the author(s) will be asked to submil the final version of the manuscript

and figures in electronic form in addition 1o & hard-copy printout.

. No manuscript or figures will be returned following publication unless a request for return

is made when the manuscript is originally submitted.
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