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SUMMARY

The subject of synthesis of critical-monotonic low-pass amplitude characteristics will be revisited. Several new
contributions will be given in order to: facilitate the choice of the proper transfer function, to allow cataloguing
the transfer functions, to simplify the circuit synthesis procedure, and to perform synthesis in the form of a state-
variable continuous time active filter. Four main criteria for transfer function synthesis will be implemented:
maximally flat at the origin, maximum slope at the band-edge, maximal asymptotic attenuation, and minimal
amplitude distortion in the pass-band. For every criterion, a class of filters will be generated and the coefficients
of the transfer functions will be calculated and published for the first time (with one exception). Properties of the
classes so generated will be quantitatively compared for the first time. The state-variable structure will be
advised as the one with the simplest synthesis procedure. The procedure will be explained and the design
process will be exemplified. Statistical tolerance analysis will be performed for the example solutions in order
to complete the information for comparison. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

There is more than 80 years since the first all-pole monotonic amplitude filtering characteristic was
published by Butterworth [1]. Since it has all its derivatives in the origin equal to zero, it theoretically
represented the only alternative to the non-monotonic characteristic using the Chebyshev polynomials
as characteristic function. The simplicity of expressing the criterion implemented for its derivation and
the simplicity of its characteristic function was probably the only reason why this solution was, is, and
will still be so popular in the future.

Searching modern literature, especially textbooks, one gets the feeling as if no alternative monotonic
solutions were developed in the meantime. In fact, the situation is different and a large set of monotonic
all-pole functions were published outperforming the Butterworth solution in every respect.
Implementation of some of these solutions may lead to serious benefits to the designer and producer. It
is our goal here to revisit the subject. We intend first to list the main criteria implemented for synthesis
of all-pole functions with monotonic amplitude. Then, we intend, for the first time, to express a unified
theory that covers the creation of the main solutions published mainly in the early 70s and before. It is
our intention to give qualitative and quantitative comparisons of the properties of the main classes of
monotonic all-pole filters. A small catalogue of the transfer function denominator coefficients will be
given which apart from the Butterworth filters was not available in the literature. We will also propose
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a systematic yet effective method for implementation of the all-pole functions in a form of state-variable
filters. Finally, we intend to demonstrate the method of monotonic filter design and some properties of the
circuit realization. In that way, we hope, we will deliver a platform offering more design freedom and
better solutions.

2. THE CRITICAL-MONOTONIC ALL-POLE AMPLITUDE CHARACTERISTIC

The squared modulus of the amplitude characteristic of a low-pass filter may be written as

T jωð Þj j2 ¼ 1
1þ ε2K ω2ð Þ (1)

where ε2 is a constant used to control the amplitude characteristic at the edge of the pass-band and for now
will be considered equal to unity, while K(ω2) is the characteristic function of the filter. In the case of an
all-pole filter, it is an even polynomial of the angular frequency ω. Halpern [2] proposed to write it in the
following form:

K ω2
� � ¼ L n ω2

� � ¼ ∫
ω

0 x�E n�1 x2
� ��dx: (2)

Since here we are looking for a monotonic amplitude characteristic, En� 1(x
2) is to be chosen so that it

enables critical monotonicity. The first derivative of a critical-monotonic function never changes its sign.
The first condition for that is En� 1(x

2) to be a full square, i.e. to be expressed as a square of another
polynomial: En�1 x2ð Þ ¼ V2

n�1 xð Þ , where Vn�1(x) is to be an odd or an even polynomial. The second
condition was that all the zeros of Vn� 1(x) have to be real and to be located in the interval {0, 1}. To
that end, Vn�1(x) was expressed as a sum of orthogonal polynomials with the interval of orthogonality
defined by the normalized pass-band of the filter, i.e. ω∈{0, 1}.

To avoid repeating the proper developments here, we are giving the expressions of Vn�1(x) as [2]:

Vn�1 ¼ ∑Ci�Ui xð Þ (3)

where Ci are properly chosen constants, andUi(x) are Jacobi polynomials satisfying the following relation

∫
1

0x�Uj�Uk�dx ¼
0 for j≠k
1 for j ¼ k

�
(4)

while j and k are both even or both odd natural numbers. In that way, we get

L n ω2
� � ¼ ∫

ω

0
x ∑

n�2ð Þ=2

i¼0
C2iþ1�U2iþ1 xð Þ

( )2

�dx for n-even; (5)

and

L n ω2
� � ¼ ∫

ω

0
x ∑

n�1ð Þ=2

i¼0
C2i�U2i xð Þ

( )2

�dx for n-odd; (6)

where n is the order of the filter.
The Jacobi polynomials are defined by

U2iþ1 xð Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffi
iþ 1

p
∑
i

m¼0
�1ð Þm 2iþ 1� mð Þ!

m!� iþ 1� mð Þ!� i� mð Þ! x
2 i�mð Þþ1 for n-even; (7)

and
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U2i xð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
4iþ 2

p
∑
i

m¼0
�1ð Þi�m iþ mð Þ!

m!ð Þ2� i� mð Þ! x
2m for n-odd: (8)

Table T1I contains the first 10 Jacobi polynomials. Finally, the constants Ci have to be chosen in that
way the normalization criterion: Ln(1) = 1 is satisfied, i.e.

∑
k
C2
k ¼ 1: (9)

One should mention that in (3) in the place of Ui, one may use any other classes of orthogonal
polynomials having simple zeroes in the interval {0, 1}.

The functions expressed by (5) and (6) have the property that the amplitude characteristic in the pass-
band has monotonic character with maximal number of inflection points. It is worth mentioning that if
instead of the coefficients, the polynomial zeroes were used for creation of the characteristic function,
one obtains alternative representation of the critical monotonicity as shown in [3] where the
characteristic function (for n-odd, for example) is represented as:

dK ω2ð Þ
dω

¼ A�ω� ∏
n�1ð Þ=2

i¼1
ω2 � ω2

i

� �2
; (10)

with

A ¼ 1=∫
1

0
ω� ∏

n�1ð Þ=2

i¼1
ω2 � ω2

i

� �2
dω: (11)

making K(1) = 1.

2.1. The synthesis criteria

To get a filter function, one is to find the value of the C-constants in (5) and (6). To do that, a design
criterion is needed. Four of them were used and may be stated as general. These are:

1. Maximally flat in the origin. This means all derivatives of Ln(ω2) at the origin are to be zero. The
class of filters thus obtained is called Butterworth’s after the author [1]. These will be here
referred to as B-filters.

2. Maximum slope of the characteristic function at the edge of the pass-band. The class of filters so
obtained is called L-filters and was introduced by Papoupulis [4, 5]. The name L comes from the
fact that in the original derivation Legendre polynomials were used. In some references [6], it is
stated as ‘optimal filters’ which is arbitrary.

3. Maximum asymptotic attenuation. This means the higher order coefficient in Ln(ω2) has to be max-
imal. This class of filters was introduced by Halpern [2]. These will be here referred to as H-filters.

Table I. The Jacobi polynomials.

k Uk(x)

0
ffiffiffi
2

p
1

ffiffiffi
4

p
·(x)

2
ffiffiffi
6

p
·(2x2� 1)

3
ffiffiffi
8

p
·(3x3� 2x)

4
ffiffiffiffiffi
10

p
·(6x4� 6x2 + 1)

5
ffiffiffiffiffi
12

p
·(10x5� 12x3 + 3x)

6
ffiffiffiffiffi
14

p
·(20x6� 30x4 + 12x2� 1)

7
ffiffiffiffiffi
16

p
·(35x7� 60x5 + 30x3� 4x)

8
ffiffiffiffiffi
18

p
·(70x8� 140x6 + 90x4� 20x2 + 1)

9
ffiffiffiffiffi
20

p
·(126x9� 280x7 + 210x5� 60x3 + 5x)
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4. Least-squares-monotonic. In this case, the returned power in the pass-band was minimized under
the critical monotonicity criterion. This class was introduced by Raković and Litovski [7] and
named LSM filters.

Starting with this, some other characteristic functions were produced such as the O-filters [8] where all
theC-constants were taken to be equal, or the transitional Butterwort-Legendre filters exhibiting properties
between the two originals [9–11] and [12]. In [9], the procedure of creating new transfer function was
named ‘generalization’. Other transitional classes were reported in the literature, e.g. in [13] transition
from Butterworth to Halpern filters is described.

In the set [14], and [15], alternative way of derivation of Halpern’s results was reported. It was proven
in a specific way that this class exhibits maximum attenuation in the infinity. Finally, in [16], the LSM
filters were rediscovered after 27 years. Namely, while considering [7] the author claims: ‘The
coefficients of these filters are obtained by solving a set of nonlinear equations using Newton-Raphson
iterative techniques. Such methods are computationally very expensive. In this Letter, a very simple
method is presented in which an error function is formulated in a quadratic form and the coefficients
are obtained as the eigenvector corresponding to the smallest eigenvalue of a symmetric positive-
definite matrix.’ After a glimpse to the proposed alternative one can, however, easily conclude that all
the steps (with equal complexity) included in Newton-Raphson procedure are involved while, in every
iteration, several new are added. Only C vector for 10th-order characteristic function was presented
(already published in [7]) and no pass-band characteristic of the filter function was given! No new data
about the LSM filters was generated. We still think, as we did in 1973, that the Newton-Raphson
iteration is the simplest of all. That stands especially in this case since, as will be shown once more in
the text below, we are searching for a minimum of a second-order polynomial (parabola) of at most five
variables (in the case of the 11th-order filter). Note, once found in [7], C became a final not
questionable knowledge and there was no need to rediscover it.

In the next, the four major classes will be derived starting with the expressions (5) and (6), i.e. the
corresponding values of the C-constants will be extracted according to the criteria mentioned. This
means the unified presentation will be implemented to synthesis of all classes of monotonic filters.

3. UNIFIED THEORY OF CRITICAL-MONOTONIC FILTERS

We will show in this paragraph that by proper choice of the vector of constantsC, (5) and (6) may be used
to satisfy every criterion as mentioned above. We will derive the C vector for all four classes mentioned
above. Of course, other criterions may be imposed. The developments here are inspired by the research of
Prof. Raković [17] who used a specific approach to show the way of extracting the H, L, and LSM filters
by the least-squares criterion. Here, we implement the generic criteria to (5) and (6) in order to create the
vector of constants C so that a critical-monotonic function is obtained.

a. Butterworth filters

To get the values of the C- constants for this case, one is to solve the following equations:

Ln ω2
� � ¼ ω2n: (12)

After substitution of (5) and (6) and taking derivatives of both sides, the following systems of linear
equations arise

∑

n� 2
2

i¼m
a2iþ1;mC2iþ1 ¼ 0 for m ¼ 0; 1; ::::;

n� 4
2

an�1; n�2ð Þ=2Cn�1 ¼
ffiffiffiffiffi
2n

p
(13)

for n-even, and similarly
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∑

n� 1
2

i¼m
a2i;mC2i ¼ 0 for m ¼ 0; 1; ::::;

n� 3
2

an�1; n�1ð Þ=2Cn�1 ¼
ffiffiffiffiffi
2n

p
(14)

for n-odd.
Table T2II contains the solutions of the systems (13) and (14).

b. L- filters

In this case, we have to implement the criterion of maximum derivative at the end of the pass-band
under the constraint expressed by (9).

The derivative of the characteristic function for ω = 1, for n-even, is obtained to be

dLn ω2ð Þ
dω ω¼1j

¼ f C1;C3;…;Cn�1ð Þ ¼ f Cð Þ ¼ ∑
n�2ð Þ=2

i¼0
C2iþ1U2iþ1 1ð Þ

( )2

(15)

where C is the vector of constants. C will be found by maximization of (15) under the constraint (9)
using the Lagrangian multiplier. It is necessary to maximize the following function:

F C; λð Þ ¼ f Cð Þ þ λ ∑
n�2ð Þ=2

i¼0
C2
2iþ1 � 1

( )
: (16)

After taking the derivatives and equating them to zero, one gets a system of linear equations:

∂F
∂C1

¼ 0;
∂F
∂C3

¼ 0;…;
∂F

∂Cn� 1
¼ 0; and

∂F
∂Cλ

¼ 0 (17)

which, after elimination of λ, becomes

C2i�1U2iþ1 1ð Þ � C2iþ1U2i�1 1ð Þ ¼ 0 for i ¼ 0; 1; ; ::; n� 2ð Þ=2 (18a)

and

∑
n�2ð Þ=2

i¼0
C2
2iþ1 ¼ 1: (18b)

This may be solved recursively to get

C2iþ1 ¼ U2iþ1 1ð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑

n�2ð Þ=2

i¼0
U2

2iþ1 1ð Þ
s

: (19)

Table II. The C-constants for the maximally flat case.

n C0(C1) C2(C3) C4(C5) C6(C7) C8(C9)

3 0.866025 0.5
4 0.942809 0.333333
5 0.745355 0.645497 0.166666
6 0.866025 0.489897 0.1
7 0.661437 0.687386 0.295803 0.05
8 0.8 0.565685 0.197948 0.028571
9 0.6 0.692820 0.383325 0.113389 0.014285
10 0.745355 0.602338 0.276641 0.070986 0.007936
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Equivalently, for n-odd, one gets

C2i ¼ U2i 1ð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑

n�1ð Þ=2

i¼0
U2

2i 1ð Þ
s

: (20)

Table T3III contains the numerical values for (19) and (20).

3.1. H-filters

Here, the criterion is maximum asymptotic attenuation. By inspection of (5) and (6), we easily come to
the conclusion that the asymptotic attenuation will be maximal if we choose

C2i ¼ 0 for i ¼ 0; 1;…; n-4ð Þ=2
Cn-1 ¼ 1

(21)

for n-even, and

C2iþ1 ¼ 0 for i ¼ 0; 1;…; n-3ð Þ=2
Cn�1 ¼ 1

(22)

for n-odd.
Table T4IV contains the numerical values for (21) and (22).

3.2. LSM filters

In this case, the criterion is imposed to minimize the area under the characteristic function in the pass-
band. The area is obtained by computing squares, hence the name least-squares-monotonic or LSM. In
passive filter notation, minimizing that area would mean minimization of the reflected power, hence the
physical importance of the criterion.

Table III. The C-constants for the L filters.

n C0(C1) C2(C3) C4(C5) C6(C7) C8(C9)

3 0.5 0.866025
4 0.577350 0.816496
5 0.333333 0.577350 0.745355
6 0.408248 0.577350 0.707106
7 0.25 0.433012 0.559016 0.661437
8 0.316227 0.447213 0.547722 0.632455
9 0.2 0.346410 0.447213 0.529150 0.6
10 0.258198 0.365148 0.447213 0.516397 0.577350

Table IV. The C-constants for the H filters.

n C0(C1) C2(C3) C4(C5) C6(C7) C8(C9)

3 0 1
4 0 1
5 0 0 1
6 0 0 1
7 0 0 0 1
8 0 0 0 1
9 0 0 0 0 1
10 0 0 0 0 1
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The area required is obtained by integration:

P ¼ ∫
1

0 Ln ω2
� �

dω: (23)

This is to be minimal under the condition (9). Again, using Lagrangian multiplier, for n-odd, the
following function is obtained:

f C0;C2;…;Cn�1; λ
� � ¼ ∫

1

0
∫
ω

0
x ∑

n�1ð Þ=2

i¼0
C2iU2i xð Þ

" #2
dx

8<
:

9=
;dωþλ ∑

n�1ð Þ=2

i¼0
C2
2i � 1

 !
: (24)

Similar function may be written for n-even. After proper differentiation and elimination of λ, the
following systems of second-order polynomial nonlinear equations were obtained in [7]:

C2 jþ1�∫
1

0
x2 ∑

n�2ð Þ=2

i¼0
C2iþ1U2iþ1 xð Þ

" #
�U2j�1 xð Þ�dx�

�C2j�1�∫
1

0
x2 ∑

n�2ð Þ=2

i¼0
C2iþ1U2iþ1 xð Þ

" #
�U2jþ1 xð Þ�dx ¼ 0

for j ¼ 1; 2;…; n-2ð Þ=2

∑
n�2ð Þ=2

i¼0
C2
2iþ1 ¼ 1

(25)

for n-even, and

C2j�∫
1

0
x2 ∑

n�1ð Þ=2

i¼0
C2iU2i xð Þ

" #
�U2j�2 xð Þ�dx�

�C2j�2�∫
1

0
x2 ∑

n�1ð Þ=2

i¼0
C2iU2i xð Þ

" #
�U2j xð Þ�dx ¼ 0

for j ¼ 1; 2;…; n-1ð Þ=2

∑
n�1ð Þ=2

i¼0
C2
2i ¼ 1

(26)

for n-odd.
These were solved by Newton-Raphson iteration and the results are given in Table T5V.

4. COMPARISON OF THE PROPERTIES OF THE BASIC CLASSES OF CRITICAL
CRITICAL-MONOTONIC FILTERS

In this paragraph, numerical values will be given enabling comparisons of the four classes of
monotonic filters derived above.

To get an intuitive feeling about the properties of the four classes of filters described above, in Figure F11,
the amplitude characteristic is presented. In fact, Ln(ω2) is given in logarithmic scale. One gets the general
feeling that the LSM filters are the best approximant in the pass-band while exhibiting good selectivity in
the stop-band. As expected, the H characteristic has the highest attenuation in the stop-band while the L
filters may be considered as a kind of compromise between the LSM and the H filters. Except for the
maximally flat property, no advantage can be seen for the Butterworth’s filters.

For quantitative comparison, the values of the quantities related to the three main criteria will be
listed below for all four classes of filters.

The area P, calculated from (23), will be considered first. Proper values are given in Table T6VI.
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Note that for the 10th-order LSM filter, only approximately 2% of the area (i.e. energy of the signal
spectrum in the pass-band) is ‘wasted’. The next best approximation exhibits more than twice larger
deviation from ideality. Note that from this point of view, the H filters, which are the worst solution,
are getting no better when the order of the filter is raised.

The slope of Ln(ω2) for ω = 1 is given in Table T7VII.
By inspection of Table VII, we come to the conclusion that the maximum slope at the edge of the pass-

band exhibited by the L-filters is followed by the LSM filters. In the case of the tenth order filter, the ratio
of the slopes is maximal, being 1.27 in favour to the L filters. For lower orders, this difference is
diminishing.

Finally, the asymptotic attenuation will be expressed as value of the coefficient in Ln(ω2)
multiplying ω2n. The results are shown in Table T8VIII.

To get a picture about the mutual relations of the approximants, the quotients (expressed in dB) of
the values in the last column of Table T9IX, with the value for the H filter as the denominator, will be
computed. So, for the 10th order, for the H-versus-B filter, we have: 20 � log(126/1) = 42 [dB], for
the H-versus-L filter, we have: 20 � log(126/36.7) = 10.71 [dB], and for the H-versus-LSM filter, we
have: 20 � log(126/26.3) = 13.61 [dB]. These are representing the difference in the attenuation at infinity.

Table V. The C-constants for the LSM filters.

n C0(C1) C2(C3) C4(C5) C6(C7) C8(C9)

3 0.735595 0.677422
4 0.816497 0.577350
5 0.539066 0.716797 0.442277
6 0.645810 0.661605 0.381962
7 0.425843 0.629268 0.570416 0.311037
8 0.529322 0.615107 0.516024 0.274191
9 0.349642 0.547621 0.565019 0.451636 0.233753
10 0.446303 0.553681 0.531873 0.409607 0.208768

10
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1 2 3 4
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Figure 1. The four main critical-monotonic approximants for n= 7.

Table VI. Area under the Ln(ω
2) curve.

n Type 3 4 5 6 7 8 9 10

B 0.1429 0.1111 0.0999 0.0769 0.0667 0.0588 0.0526 0.0476
H 0.3714 0.3143 0.3679 0.3390 0.3663 0.348 0.3654 0.3534
L 0.1619 0.1238 0.1071 0.0894 0.0800 0.0700 0.0640 0.0574
LSM 0.121 0.086 0.061 0.047 0.037 0.030 0.025 0.021
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Note that LSM filters are for less than 3 dB worse than the L filters. That difference is smaller for lower
orders of the filters.

As a general conclusion, we may state that B filters being derived to minimize distortions in the pass-
band are not the best solution for that purpose. Namely, use of LSM filter will provide lower distortions in
the pass-band while exhibiting higher selectivity, i.e. narrower transition region. Similarly, the L filter
derived to have maximal slope at the band-edge exhibits no narrower transition region. The H filters are
by no doubt the most selective critical-monotonic filters. This suggests that the trade-off between pass-
band distortions and stop-band attenuation is to be sought between the LSM and H filters.

5. STATE-VARIABLE IMPLEMENTATION OF THE CRITICAL-MONOTONIC
ALL-POLE FILTERS

There are several options for implementation of a given transfer function as an RC active continuous
time filter. Among others here, for the implementation of the critical-monotonic all-pole filters, we
advise the use of the so-called state-variable filter structure. As an example, a schematic realizing a
fifth-order low-pass filter is depicted in Figure F22.

This structure attracts attention for a long period of time, e.g. [18, 19]. The main advantages of this
structure may be listed as follows:

• Exhibits the simplest of all relation between the element values and the filter’s transfer function
coefficients

• Maintains separate adjustment of each operating coefficient,

Table VII. The slope of Ln(ω
2) at ω= 1.

n Type 3 4 5 6 7 8 9 10

B 6 8 10 12 14 16 18 20
H 6 8 10 12 14 16 18 20
L 8 12 18 24 32 40 50 60
LSM 7.288 10.67 15.34 20.10 26.16 32.29 39.74 47.24

Table VIII. The value of
lim

ω→∞
Ln ω2ð Þ=ω2n½ �.

n Type 3 4 5 6 7 8 9 10

B 1 1 1 1 1 1 1 1
H 2 3 6 10 20 35 70 126
L 1.41 2.45 4.47 7.07 13.23 22.14 42 36.37
LSM 1.35 1.73 2.65 3.82 6.22 9.60 16.36 26.30

Table IX. The coefficients of the denominator polynomials of the B filters.

s10 s9 s8 s7 s6 s5 s4 s3 s2 s1 s0

1.414214 1.
1. 2.000000 2.000000 1.

1. 2.613126 3.414214 2.613126 1.
1. 3.236068 5.236068 5.236068 3.236068 1.

1. 3.863703 7.464102 9.141620 7.464102 3.863703 1.
1. 4.493959 10.097835 14.591794 14.591794 10.097835 4.493959 1.

1. 5.125831 13.137071 21.846151 25.688356 21.846151 13.137071 5.125831 1.
1. 5.758770 16.581719 31.163437 41.986386 41.986386 31.163437 16.581719 5.758770 1.

1. 6.392453 20.431729 42.802061 64.882396 74.233429 64.882396 42.802061 20.431729 6.392453 1.
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• Allows gain tuning of all operating coefficients,
• Multiple inputs and/or outputs are possible.

A special property of these structures, if compared with cascaded realization of second- and/or third-
order cells, is that now no attention is to be paid to the order of extraction of the poles, i.e. the order of
the cells in the cascade. Namely, since every cell has different nominal gain, if the one with highest
gain is set at the input, one risks to produce distortions of the input signal. In the opposite case, when
the one with smallest gain is set as the input cell of the filter, one generally gives rise to the noise.
Accordingly, an algorithm for optimal ordering of the cells in the cascade would be necessary to be
implemented in that case.

The transfer function of the state-variable filter of nth order is given by

T sð Þ ¼ RG0

∑
n

i¼0
RGn�i sCRð Þi

(27)

where Gi= 1/Ri, for i= 0,1,2,…,n�1, and Gn = 1/R.
So if the normalization frequency ωnorm= 1/(RC) is used, the coefficients of the denominator

polynomial are numerically equal to the normalized conductance values in Figure 2. This dramatically
simplifies the implementation of a state-variable filter based on data given in the tables given below.
This is why in the next we are listing the coefficients of the denominator polynomials of the four basic
classes of critical-monotonic all-pole filters discussed above (Ta Q1bles T10� T12X–XII).

6. DESIGN EXAMPLE

To design an all-pole filter with critical-monotonic amplitude in a form of a state-variable filter, we have to
make two decisions: choice of the filter type (among the four classes) and choice of the filter order n. To do
that, we need two additional data. For the choice of the class of filters, we have to think on the requirements
in the following way. First, looking to the attenuation characteristic in the stop-band, one would always
prefer the H filters. When looking to the pass-band, however, additional arguments come in fore mainly
related to the shape of the spectrum of the signal which is processed. In most cases, the energy of the

Figure 2. Fifth-order all-pole low-pass state-variable filter.

Table X. The coefficients of the denominator polynomials of the H filters.

s10 s9 s8 s7 s6 s5 s4 s3 s2 s1 s0

1.0000 1.1070 1.3627 0.4999998
1.0000 1.3084 1.7449 1.0785 0.3333335

1.0000 1.2253 2.0007 1.3535 0.7681405 0.1666665
1.0000 1.3607 2.3658 1.9082 1.3280 0.5153700 0.1000007

1.0000 1.3169 2.6171 2.1957 1.8819 0.8954657 0.3271794 0.0499999
1.0000 1.4187 2.9656 2.7668 2.6300 1.5218 0.7208994 0.2029639 0.0285715

1.0000 1.3896 3.2155 3.0712 3.3225 2.1019 1.2390 0.4517988 0.1214301 0.0142857
1. 1.4512 3.5253 3.6016 4.1933 2.9624 1.9859 0.8937465 0.3222619 0.0712828 0.0078896
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signal is located in the lower part of the pass-band and implementation of LSM amplitude characteristic is
preferable. If LSM is chosen, one should expect higher order of the filter to be implemented (in
comparison to the H filters) for the given stop-band requirements to be satisfied.

In the example, here we chose the filter attenuation characteristic defined in Figure F33. There, we ask
for the attenuation in the stop-band to reach 60 dB (1000 times) at the frequency 2.5 times higher than
the cut-off frequency of the filter being fc = 3.2 kHz.

To make a choice according to the consideration mentioned, one should create quantitative
information about the dependence of the stop-band attenuation for a given frequency on the order of
the filter. That is done for n=6 in Figure F44. There, on the abscissa, the attenuation is given while the
ordinate is representing the corresponding normalized frequency for the proper filter, i.e. the stop-band
attenuation characteristic is inverted. We can read that for n=6, at the frequency ω=2.5 ·ωc, the H
filter exhibits 65+ [dB]. Similar attenuation values may be seen for the L filter. The LSM filter,
however, exhibits only 57+ [dB] meaning that the H filter and L filter satisfy the stop-band
requirements with n=6, while the LSM solution will need a seventh order filter. So, we see that a
trade-off between the pass-band magnitude distortion and the stop-band performance is possible. If the
pass-band requirements are prevailing, however, one will use the LSM solution paying the price of

Table XI. The coefficients of the denominator polynomials of the L filters.

s10 s9 s8 s7 s6 s5 s4 s3 s2 s1 s0

1.0000 1.3107 1.3590 0.577.3484
1.0000 1.5629 1.8879 1.2416 0.4082493

1.0000 1.5515 2.2036 1.6927 0.898.3409 0.2236066
1.0000 1.7261 2.6897 2.4334 1.6331 0.6796352 0.1414213

1.0000 1.7279 2.9928 2.9246 2.3322 1.2308 0.4379427 0.075.5929
1.0000 1.8614 3.4466 3.7232 3.3477 2.1189 0.9939308 0.2996703 0.0451753

1.0000 1.8663 3.7416 4.2490 4.2477 3.0119 1.7074 0.6804341 0.1815714 0.0238093
1. 1.4443 3.2653 3.5424 3.9521 3.0847 2.1108 1.0830 0.4220421 0.1077180 0.0137465

Table XII. The coefficients of the denominator polynomials of the LSM filters.

s10 s9 s8 s7 s6 s5 s4 s3 s2 s1 s0

1.0000 1.6112 1.5770 0.7386759
1.0000 1.9449 2.3357 1.6423 0.5773505

1.0000 2.0904 2.9119 2.5154 1.3811 0.3768382
1.0000 2.3347 3.6550 3.7126 2.6098 1.1704 0.2624239

1.0000 2.4426 4.1923 4.7414 3.9215 2.2696 0.8536734 0.1602889
1.0000 2.6335 4.8946 6.1169 5.7487 3.9801 1.9802 0.6424145 0.1042032

1.0000 2.7183 5.3970 7.2412 7.5049 5.8983 3.5225 1.5214 0.4313536 0.0611156
1. 2.8760 6.0631 8.7367 9.8614 8.6259 5.9248 3.1115 1.1937 0.3012679 0.0380161

Figure 3. Definition of the filter requirements. Here, fc = 3.2 kHz and amin = 60 dB.
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one operational amplifier, two resistors, and one capacitor needed for realization of the state-variable
version of the active filter.

So, for the requirements expressed in Figure 3, we have RC = (1/ωnorm) = (1/ωc) = [1/
(2π · 3200)] = 4.9736 · 10�5 s. If we choose R= 10 kΩ, we get C= 4.9736 nF. The rest of the
resistances are easily calculated from

∑
n

i¼0
ais

i
n ¼ ∑

n

i¼0
RGn�i sCRð Þi (28)

where a is the vector of coefficients in the denominator of the transfer function and sn = sRC is the
normalized complex frequency. By comparison, we get: RGn� i = ai or Rn-i =R/ai.

If the seventh-order LSM and the sixth-order H solutions are taken, the values given in Table T13XIII arise.
Note the same state-variable circuit synthesis procedure may be applied to any all-pole filter.
The amplitude characteristics of the seventh-order LSM and the sixth-order H state-variable filters

obtained by SPICE simulation are depicted in Figure F55. The operational amplifier was modelled as
ideal with a gain of 105.

When comparing filter functions, some additional information is frequently needed. Namely, the
mapping of the element tolerances into the response variations may be of interest and help the
selection of the solution. These data may lead to the estimation of the yield in series production and
because of that may be of decisive importance. To get the solution properties from the tolerance
point of view, Monte Carlo simulation of the seventh-order LSM, and the sixth-order H state-
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f/fc c=

log{1+ [dB]Ln·

Figure 4. Attenuation characteristics of sixth-order filters in the stop-band.

Table XIII. Resistances within the filters (Ω).

R7 R6 R5 R4 R3 R2 R1 R0

Seventh-order LSM 62387.35 11714.08 4406.06 2550.04 2109.08 2385.33 4094.00 10000.0
Sixth-order H 100000. 19403.5 7530.12 5240.54 4226.90 7349.16 10000.0

-20
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0
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H

Figure 5. Amplitude characteristics of the seventh-order LSM and sixth-order H filters.
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variable filters were performed with all element values having 1% standard deviation and Gaussian
distribution. The simulation results are depicted in Figure F66. Here part of the amplitude characteristic
around the cut-off frequency is given for the interval where the sensitivity is supposed to be the
highest. As expected, the LSM filter exhibits very low variations in the main part of the pass-band.
At the band-edge, however, due to the higher skirt slope of the amplitude characteristic, it produces
larger variations than the H filter.

When considering the last results, one should have in mind that the tolerance mapping is governed
by two factors. First is the very transfer function as a mathematical expression and second is the
physical realization in a form of electrical or electronic circuit. Having that in mind, one may claim
that for a different realization (e.g. passive or cascaded active), different mappings will be obtained.
In general, however, one may expect some similarity to the ones depicted in Figure 6.

7. CONCLUSION

The subject of synthesis of critical-monotonic low-pass amplitude characteristics was revisited.
Several new contributions were given in order to: facilitate the choice of the proper transfer
function, to allow cataloguing the transfer functions, to simplify the circuit synthesis procedure,
and to perform synthesis in the form of a state-variable continuous time active filter. In that way,
we hope, a platform is established for choice of more appropriate monotonic solutions depending
on the design requirements imposed. Four main criteria for transfer function synthesis were
implemented: maximally flat at the origin, maximum slope at the band-edge, maximal asymptotic
attenuation, and minimal amplitude distortion in the pass-band. For every criterion, a class of
filters was generated and the coefficients of the transfer functions were generated and published
for the first time (with one exception). Properties of the classes so generated were quantitatively
compared for the first time. The state-variable structure was advised as the one with the simplest
synthesis procedure. A procedure was explained and the design process was exemplified.
Statistical tolerance analysis was performed for the example solutions in order to complete the
picture for comparison.
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Four criteria are implemented to synthesize, in a unified manner, the transfer functions of all-pole mono-
tonic amplitude filters. Comparisons of the properties of the filter classes and coefficients of the transfer
functions are published the first time. The state-variable structure is advised as the one with the simplest
synthesis procedure which is exemplified. Statistical tolerance analysis is performed for the example so-
lutions in order to complete the information needed for comparisons. The figure depicts comparison of
two alternatives.
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