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THE AIM OF COMMUNICATION

• The aim of this communication is to present a new family of iterative

methods for the simultaneous determination of complex polynomial

zeros which is ranked as the most efficient among existing methods

based on fixed point relations.

• The presented family of methods relies on the fixed point relation

of Gargantini-Henrici’s type and a class of suitable corrections which

enable very fast convergence (equal to six) with the minimal compu-

tational costs.

[I. Gargantini, P. Henrici, Numer. Math. 18 (1972)]
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WHY SIMULTANEOUS DETERMINATION OF ZEROS?

• The problem of solving polynomial equations is very important in the

theory and practice, for example, in

– applied mathematics,

– many branches of engineering sciences (e.g., control theory, digital

signal processing, nonlinear circuits, analysis of transfer functions),

– physics (high-energy physics), computer science,

– finance,

– biology, etc.

See [J. M. McNamee, Numerical Methods for Roots of Polynomials,

Elsevier 2007].
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WHY SIMULTANEOUS DETERMINATION OF ZEROS?

(CONTINUATION)

Determination of polynomial zeros simultaneously is useful and efficient

because of

• self-correction of root approximations during the iteration process

(not possible by methods of other type),

• very fast convergence,

• low computational cost in the implementation on digital computers,

• very efficient parallelism since several versions of the same algorithm

can run simultaneously.
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FAMILY OF ACCELERATED SIMULTANEOUS METHODS

f(z) =
n∏

j=1

(z − ζj) – a monic polynomial of degree n with simple, real

or complex zeros ζ1, ..., ζn

From

u(z) =
f(z)

f ′(z)
=

[ d

dz
log f(z)

]−1

=
( n∑

j=1

1

z − ζj

)−1

(1)

the following basic relation follows:

ζi = z − 1

1

u(z)
−

∑
j∈In
j 6=i

1

z − ζj

(i ∈ In := {1, . . . , n}). (2)
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Let z1, . . . , zn be distinct approximations to the zeros ζ1, . . . , ζn.

Setting z = zi and substituting the zeros ζj by some approximations

z∗
j in

ζi = z − 1

1

u(z)
−

∑
j∈In
j 6=i

1

z − ζj

(i ∈ In := {1, . . . , n}),

the following iterative method

ẑi = zi − 1

1

u(zi)
−

∑
j∈In
j 6=i

1

zi − z∗
j

(i ∈ In) (3)

for the simultaneous determination of all simple zeros of the polynomial

P is obtained.
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The choice z∗
j = zj in (3) gives the well-known Ehrlich-Aberth method

ẑi = zi − 1

1

u(zi)
−

∑
j∈In
j 6=i

1

zi − zj

(i ∈ In), (4)

of the third order.

The choice z∗
j = zj − u(zj) in (3) gives the Nourein method

ẑi = zi − 1

1

u(zi)
−

∑
j∈In
j 6=i

1

zi − zj + u(zj)

(i ∈ In) (5)

of the fourth order

(NO ADDITIONAL CALCULATIONS ARE NEEDED!).
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Considering the Ehrlich-Abert method (4) and the Nourein method (5),

it is evident that the better approximations z∗
j in

ẑi = zi − 1

1

u(zi)
−

∑
j∈In
j 6=i

1

zi − z∗
j

(i ∈ In)

give the more accurate approximations ẑi; indeed, if z∗
j → ζj, then

ẑi → ζi.

In this paper we extend such an approach to state a family of sixth-order

methods.
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Let h be a real or complex function such that h and its derivatives h′

and h′′ are continuous in the neighborhood of 0, and let

uj = u(zj), tj =
f(zj − uj)

f(zj)
.

Assume that approximations z∗
j , appearing in

ẑi = zi − 1

1

u(zi)
−

∑
j∈In
j 6=i

1

zi − z∗
j

(i ∈ In),

are given by

z∗
j = zj − uj − h(tj)

f(zj − uj)

f ′(zj)
.

J. Džunić. M. Petković, L. Petković Version 1.0 – August 10, 2011



Family of simultaneous zero-finding methods 10

We state the NEW SIMULTANEOUS METHOD:

ẑi = zi − 1

1

ui

−
∑
j∈In
j 6=i

(
zi − zj + uj + h(tj)

f(zj − uj)

f ′(zj)︸ ︷︷ ︸
z∗

j

)−1 (i ∈ In).

(6)

The function h should be determined in such a way to provide the order

of convergence of the family of methods (6) as high as possible.
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CONVERGENCE THEOREM

The main result of the paper is the convergence theorem that gives

necessary and sufficient conditions for the function h to provide as high

as possible order of convergence of the simultaneous method (6).

THEOREM 1. Let h be any function satisfying

h(0) = 1, h′(0) = 2, and |h′′(0)| < ∞.

If z
(0)
1 , . . . , z(0)

n are sufficiently close initial approximations to the dis-

tinct zeros ζ1, . . . , ζn, then the order of convergence of the family of

simultaneous methods (6) is six.
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The proof is based on the error relation:

ε̂i = −ε2
i

{
c2,j

[
1 − h(0)

]
ε2

j

+
[
−2c3,j(h(0) − 1) + c2

2,j(4h(0) − h′(0) − 2)
]
ε3

j +
[
−3c4,j(h(0) − 1) + c2,jc3,j(−7 + 14h(0) − 4h′(0))

+c3
2,j(4 − 13h(0) + 7h′(0) − h′′(0)/2)

]
ε4

j

}
+ OM(ε7).

ck,j =
f (k)(ζj)

k!f ′(ζj)

To provide the order six, we must take

h(0) = 1, h′(0) = 2 and |h′′(0)| is bounded.
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THE CHOICE OF FUNCTION h(t)

Example 1.

h1(t) =
1 + βt

1 + (β − 2)t
(β ∈ R)

Example 2.

h2(t) =
(
1 +

2

m
t
)m

(m 6= 0 is a rational number)

Example 3.

h3(t) =
1 + γt2

1 − 2t
, (γ ∈ R)

Example 4.

h4(t) =
1

1 − 2t + at2
(a ∈ R)
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Example 5.

h5(t) =
t2 + (c − 2)t − 1

ct − 1
(c ∈ R)

Example 6.

h6(t) =
1

t

( 2

1 +
√

1 − 4t
− 1

)

ANOTHER CONTRIBUTION: Iterative functions of the form

z∗ = φ(z) = z − u(z) − h(t)
f(z − u(z))

f(z)

(h(0) = 1, h′(1) = 2, |h′′(0)| < ∞),

including h1 to h6, define some new and some existing optimal two-

point methods of the fourth order for finding a simple zero of a nonlinear

equation.
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COMPUTATIONAL ASPECTS

From a practical point of view, it is of great importance to know the

computational efficiency of any iterative zero-finding method since it

is closely connected to the features such as

• the number of necessary numerical operations in computing zeros

with the required accuracy,

• the convergence speed,

• processor time of a computer, etc.

The knowledge of the computational efficiency is of particular interest

in designing a package of root-solvers.
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The efficiency of an iterative method (IM) can be successfully esti-

mated using the coefficient of efficiency given by

E(IM) =
log r

d
, (7)

where

r is the order of convergence of the iterative method (IM), and

d is the computational cost.

The rank list of methods obtained by this formula mainly matches well

with the real CPU (central processor unit) time, see Chapter 6 of

M. S. Petković, Iterative Methods for Simultaneous Inclusion of Poly-

nomial Zeros, Springer-Verlag, 1989, 2008.
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The computation cost d is usually calculated using arithmetic opera-

tions per iteration taken with certain weights depending on the number

of bits b of the used computer arithmetic:

was ∼ O(b) – addition+subtraction,

wm ∼ O(b log b log(log b)) – multiplication [Schönhage, Strassen]

wd ∼ 4wm – division.

The number of basic operations per one iteration for all n zeros:

ASn – addition+subtraction

Mn – multiplication

Dn – division

J. Džunić. M. Petković, L. Petković Version 1.0 – August 10, 2011



Family of simultaneous zero-finding methods 18

Computational cost:

d = d(n) = wasASn + wmMn + wdDn

Coefficient of efficiency:

E(IM, n) =
log r

wasASn + wmMn + wdDn

. (8)

WE COMPARED the convergence behavior and computational effi-

ciency of

– the Ehrlich-Aberth method (4) of order 3,

– the Nourein method (5) of order 4

– the new family of simultaneous method (6) of order 6.
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Methods An + Sn Mn Dn

The Ehrlich-Abert method (4) 4n2 − 2n 2n2 n2 + n

The Nourein method (5) 4n2 − n 2n2 n2 + n

The new method (6) 5n2 + n 3n2 + 2n n2 + 2n

Table 1 The number of basic operations (real arithmetic operations)

The data for the weights of arithmetic operations were taken from

R. Brent, P. Zimmermann, Modern Computer Arithmetic, Cambridge

University Press, 2011.
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Applying (8) we calculated the percent ratios

ρ6,4(n) = (E((6), n)/E((4), n) − 1) · 100 (in %), (F/EA%)

ρ6,5(n) = (E((6), n)/E((5), n) − 1) · 100 (in %). (F/N%)

These ratios are graphically presented in Figure 1 as functions of the

polynomial degree n and show the (percentage) improvement of com-

putational efficiency of the new method (6) in relation to the methods

(4) and (5).
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Fig. 1 Ratios of computational efficiency

It is evident from Figure 1 that the new method (F-6) is more efficient

than the methods (E-4) and (N-5). The improvement is especially

expressive in regard to the Ehrlich-Aberth method (E-4) (full line).
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NUMERICAL EXAMPLES

To demonstrate the convergence behavior of the methods (4), (5) and

(6), we tested a number of polynomial equations; for illustration, we

present two examples.

We applied the programming package Mathematica with multiprecision

arithmetic based on the GNU multiprecision package GMP developed

by Granlund

T. Granlund, GNU MP; The GNU multiple precision arithmetic library,

edition 5.0.1 (2010).
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As a measure of accuracy of the obtained approximations, we have

calculated Euclid’s norm

e(m) := ||z(m) − ζ||2 =

(
n∑

i=1

∣∣z(m)
i − ζi

∣∣2
)1/2

(m = 0, 1, . . .).

The tables also contain the computational order of convergence r̃,

evaluated by the following formula

r̃ ≈ log |ek+1/ek|
log |ek/ek−1|

.
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EXAMPLE 1.

P17(z) = (z − 1)(z8 − 256)(z8 − 65536)

The denotation A(−h) means A × 10−h.

Methods e(1) e(2) e(3) r̃

The Ehrlich-Aberth method (4) 6.04(−2) 2.37(−5) 1.28(−15) 3.0139

The Nourein method (5) 2.69(−2) 4.19(−8) 7.31(−32) 4.0910

(M1)–h1, β = 0 5.17(−3) 3.98(−16) 3.55(−96) 6.1047

(M2)–h2, m = 2 4.56(−2) 9.82(−10) 3.73(−55) 5.9245

(M3)–h3, γ = 1 1.42(−2) 1.23(−13) 9.69(−80) 5.9752

(M4)–h4, a = −1 4.55(−3) 1.92(−16) 1.36(−95) 5.9184

(M5)–h5, c = 1 1.19(−2) 3.21(−14) 2.87(−83) 5.9674

(M6)–h6 1.27(−2) 8.27(−14) 1.92(−84) 6.3147

Table 2 Euclid’s norm of errors – the polynomial of the 17th degree
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EXAMPLE 2.

P21(z) = (z − 4)(z2 − 1)(z4 − 16)(z2 + 9)(z2 + 16)(z2 + 2z + 5) ×
(z2 + 2z + 2)(z2 − 2z + 2)(z2 − 4z + 5)(z2 − 2z + 10).

Methods e(1) e(2) e(3) r̃

The Ehrlich-Aberth method (4) 8.76(−2) 1.03(−4) 2.16(−13) 2.9622

The Nourein method (5) 4.61(−2) 5.74(−7) 1.26(−26) 4.0080

(M1)–h1, β = 0 1.40(−2) 3.14(−12) 4.20(−70) 5.9978

(M2)–h2, m = 2 2.61(−2) 5.72(−10) 4.85(−56) 6.0152

(M3)–h3, γ = 1 1.27(−2) 1.94(−12) 3.31(−71) 5.9869

(M4)–h4, a = −1 6.36(−3) 2.59(−14) 3.10(−83) 6.0510

(M5)–h5, c = 1 2.54(−2) 5.06(−10) 2.26(−56) 6.0189

(M6)–h6 2.44(−2) 1.14(−11) 1.54(−67) 5.9878

Table 3 Euclid’s norm of errors – the polynomial of the 21-st degree
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CONCLUSIONS:

• From Tables 2 and 3 and a number of tested polynomial equations we

can conclude that the proposed family (6) produces approximations of

exceptional accuracy; two iterative steps are usually sufficient in solv-

ing most practical problems when initial approximations are reasonably

good and polynomials are well-conditioned.

• The presented analysis of computational efficiency shows that the

proposed family (6) is more efficient than all existing methods based

on fixed point relations.

• We observe that the computational order of convergence (the last

column of Tables 2 and 3) mainly well coincides to the theoretical order

of convergence of all considered methods.
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