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MODIFIED NEWTON’S METHOD WITH MEMORY ∗

Jovana Džunić

Abstract. The well-known Newton’s iterative method for solving nonlinear equations is
modified by introducing a free parameter. Applying an accelerating technique based on
varying a free parameter calculated by Hermite-Birkhoff interpolating polynomial [1] in
each iteration, the order of convergence of this method is considerably increased without
additional computational cost. In this way, the reuse of old information provides a high
computational efficiency. Numerical experiments confirm the theoretical results.

1. Preliminaries

Iterative methods with memory for solving nonlinear equations, that use in-
formation from the current and previous iteration, were considered for the first
time by Traub in 1964 in his book [13] almost fifty years ago. Surprisingly enough,
after Truab’s research this class of methods was studied very seldom in the litera-
ture in spite of its capability to reach high computational efficiency. Recent results
published in [3]–[4] and [2] showed considerably high computational efficiency of
n-point methods with memory using new accelerating techniques based on vary-
ing free parameters calculated by interpolating polynomials in each iteration. In
this paper we show that this accelerating approach can be successfully applied to
a very familiar one-step method such as Newton’s. High order of convergence is
attained without additional function evaluations, making the mentioned methods
very efficient. Numerical examples are given to demonstrate excellent convergence
features of the presented methods with memory.

Let α be a simple real zero of a real function f : D ⊂ R → R and let x0 be an
initial approximation to α. The well known Newton’s method

xk+1 = xk − f (xk)
f ′(xk)

= N(xk)(1.1)
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and its derivative free variant proposed by Steffensen [12]

xk+1 = xk − f (xk)2

f (xk + f (xk)) − f (xk)
(1.2)

are the most well known one-step iterations of order two.
In his book [13] Traub considered the iterative function of order two

Φ(x, γ) = x − γ f (x)2

f (x + γ f (x)) − f (x)
= x − f (x)

f [x + γ f (x), x]
,(1.3)

where γ � 0 is a real constant and f [x, y] = f (x)− f (y)
x−y denotes a divided difference.

Note that the choice γ = 1 reduces (1.3) to (1.2).
Introducing the abbreviations

u(x) =
f (x)
f ′(x)

and C2(x) =
f ′′(x)
2 f ′(x)

,

Traub [13] derived the error relation of the method (1.3) in the form

Φ(x, γ) − α = (1 + γ f ′(x))C2(x)u(x)2 +O
(
u(x)3

)
,

and showed that the Steffensen-like method (1.3) can somewhat be improved by
the reuse of information from the previous iteration. Approximating f ′(x) by the
secant

f ′(xk) ≈ f̃ ′(xk) =
f (xk) − f (xk−1)

xk − xk−1
= f [xk, xk−1],

Traub [13] constructed the following method with memory with the order of con-
vergence at least 1 +

√
2 ≈ 2.414⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

γ0 is given, (k = 0, 1, . . .)

γk = − xk − xk−1

f (xk) − f (xk−1)
for k ≥ 1,

xk+1 = xk − γk f (xk)2

f (xk + γk f (xk)) − f (xk)
,

In the same book [13], Traub considered some other techniques of acceleration with
the reuse of information from the previous iteration. Among others he studied the
accelerated Newton’s method of order 1 +

√
3 ≈ 2.732. In fact, Traub considered

the Halley’s method

xk+1 = xk − u(xk)
1 − C2(xk)u(xk)

and eliminated the second derivative to construct the iterative scheme⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p0 is given, (k = 0, 1, . . .),

pk = −
H′′3 (xk)

2 f ′(xk)
for k ≥ 1,

xk+1 = xk − f (xk)
f ′(xk) + pk f (xk)

,

(1.4)
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where H3(t) = H3(t; xk, xk, xk−1, xk−1) is Hermite’s interpolating polynomial of third
degree that satisfies interpolating conditions H3(xi) = f (xi), H′3(xi) = f ′(xi), i =
k, k − 1. Thus

H′′3 (xk) =
2(2 f ′(xk) + f ′(xk−1) − 3 f [xk, xk−1])

xk − xk−1
.

Similar approaches for accelerating derivative free multipoint methods by vary-
ing parameters were applied in [6], [5], [4] and [2] in a considerably more efficient
way. Following Traub’s classification [13, pp. 8-9], methods that use information
from the current and previous iteration are called methods with memory. Presenting
a new one-step method with memory is the aim of this paper.

In our convergence analysis we employ the O- and o-notation: If {�k} and {hk} are
null sequences and �k/hk → C, where C is a nonzero constant, we write �k = O(hk)
or �k ∼ Chk. If �k/hk → 0,we write �k = o(hk).

Let {xk} be a sequence of approximations generated by an iterative method (IM).
We introduce error εk = xk − α. If this sequence converges to the zero α of f with
the order r, we will write

εk+1 ∼ Dk,rε
r
k,(1.5)

where Dk,r tends to the asymptotic error constant Dr of the iterative method (IM)
when k → ∞. Formally, we use the order of a sequence of approximations as the
subscribe index to distinguish asymptotic error constants.

2. Modified Newton’s method

In 1964’s book [13], Traub derived a number of non-optimal cubically conver-
gent two-point methods. He used an interpolating function to obtain the following
implicit relation in α,

α ≈ x − f (x)

f ′
(
x + 1

2 (α − x)
) .(2.1)

Substituting α on the right-hand side of (2.1) by Newton’s approximation x − u(x),
the following iterative function of order three is obtained

Φ(x) = x − f (x)

f ′(x − 1
2 u(x))

,

requiring three function evaluations.

Assuming that α−x = O( f (x)) and substituting α−x = 2γ f (x) in (2.1), we obtain
the following modification of Newton’s method (1.1)

xk+1 = xk − f (xk)
f ′(wk)

,(2.2)
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where wk = xk+γ f (xk). The new method (2.2) uses one function and one derivative
evaluation. Standard analysis based on Taylor’s expansions

f (xk) = f ′(α)
(
εk + c2ε

2
k +O(ε3

k)
)
,(2.3)

εk,w = εk(1 + γ f ′(α)) +O(ε2
k),(2.4)

f ′(wk) = f ′(α)
(
1 + 2c2εk,w +O(ε2

k,w)
)
,(2.5)

f (xk)
f ′(wk)

= εk

(
1 + c2εk +O(ε2

k)
)(

1 − 2c2εk,w +O(ε2
k,w)
)
,(2.6)

leads to the error relation for the new method (2.2)

εk+1 = c2εk(2εk,w − εk) +O(ε3
k) = c2(1 + 2γ f ′(α))ε2

k +O(ε3
k).(2.7)

Thus, the method (2.2) is of order two as the original Newton’s method (1.1). How-
ever, the error relation (2.7) of the new method (2.2) gives a way for an improvement
in convergence speed without additional function evaluations. Such acceleration
is discussed in Section 3..

Another interpretation of method (2.2) can be given by the following obser-
vation. According to Lagrange’s Theorem, there exists a point z (see Figure 2.1),
between the zero α and its approximation x, with a tangent line t parallel to the
secant s : (α, 0)(x, f (x)).

Α z xy

Fig. 2.1: Geometric interpretation of method (2.2)

Thus, from Lagrange’s relation we obtain

f (x) − f (α)
x − α = f ′(z),

which results in

α = x − f (x)
f ′(z)
.
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Our best guess is to take z = x+γ f (x), for some choice of γ,which yields the method
(2.2), again.

As shown on Figure 2.1, Newton’s approximation y = N(x) cannot provide a
quality approximation for the specific considered case. The sought zero is overshoot
by the tangent line at (x, f (x)) (in green). With an adequate choice of γ the problem
is overcome by the method (2.2).

3. Acceleration of the modified Newton’s method

The modified Newton method (2.2) can be accelerated with the use of informa-
tion from the previous iteration. Minimization of the error relation (2.7) is obtained
by recalculating the free parameter γ = γk ≈ −1/(2 f ′(α)) in each iterative step. We
propose the following formulae for approximating f ′(α) based on the available
data,

f ′(α) ≈ f ′(wk−1),(3.1)

f ′(α) ≈ f [xk, xk−1] =
f (xk) − f (xk−1)

xk − xk−1
,(3.2)

f ′(α) ≈ P′(xk),(3.3)

where
P(t) = a0 + a1(t − xk) + a2(t − xk)(t − wk−1)

is the interpolating polynomial of Hermite-Birkhoff type [1] that satisfies the fol-
lowing interpolation conditions

P(xk) = f (xk), P′(wk−1) = f ′(wk−1), P(xk−1) = f (xk−1).(3.4)

From the conditions (3.4) we obtain coefficients a0, a1 and a2 for the polynomial P

a0 = f (xk), a1 = f ′(wk−1) + a2(xk − wk−1),

a2 =
f [xk, xk−1] − f ′(wk−1)

xk + xk−1 − 2wk−1
.

(3.5)

Based on the relations (3.1)–(3.3), formulae for the accelerating modified New-
ton method are of the form

Model I γk = − 1
2 f ′(wk−1)

,(3.6)

Model II γk = − 1
2 f [xk, xk−1]

,(3.7)

Model III γk=
−1/2

f ′(wk−1) + 2a2(xk − wk−1)
(3.8)

with the coefficient a2 given in (3.5).
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Combining (2.2) with (3.6)–(3.8), we construct the modified Newton method
with memory ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

γ0 is given,
γk is calculated by one of (3.6)–(3.8), k ≥ 1,
wk = xk + γk f (xk),

xk+1 = xk − f (xk)
f ′(wk)

(k = 0, 1, . . .).

(3.9)

New error relations obtained from (2.4) and (2.7) read

εk,w ∼ (1 + γk f ′(α))εk,(3.10)
εk+1 ∼ c2(1 + 2γk f ′(α))ε2

k.(3.11)

Theorem 3.1. If an initial approximation x0 is sufficiently close to a zero α of f , then
the order of convergence of the modified Newton method with memory (3.9), where γk is
calculated by (3.6) or (3.7), is 1 +

√
2 ≈ 2.414.

Proof. Note that acceleration technique of minimizing the term 1+2γ f ′(α) does
not influence the approximation wk since its error is

εk,w ∼ (1 + γk f ′(α))εk =
(

1
2 +O(εq

k−1)
)
εk = O(εk),(3.12)

therefore, still of order εk.

According to (2.5), (3.6) and (3.12) we have

1 + 2γk f ′(α) = 1 − f ′(α)
f ′(wk−1)

= 1 − 1
1 + 2c2εk−1,w +O(ε2

k−1,w)

∼ 2c2εk−1,w ∼ c2εk−1.(3.13)

If (3.7) is employed to recalculateγk, the following estimates are obtained similar
to (3.13)

f [xk, xk−1] ∼ f ′(α)(1 + c2εk−1),

1 + 2γk f ′(α) = 1 − f ′(α)
f [xk, xk−1]

∼ 1 − 1
1 + c2εk−1

∼ c2εk−1.(3.14)

Therefore, both accelerating methods given by formulae (3.6) and (3.7) give ap-
proximations of the same quality.

After substituting (3.13) or (3.14) and (1.5) into (3.11), and having in mind (3.12),
we estimate

εk+1 ∼ 2c2
2εk−1,wε

2
k = O(ε2r+1

k−1 ).(3.15)
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Comparing exponents of the term εk−1 in the relations (3.15) and

εk+1 ∼ Dk,rDr
k−1,rε

r2

k−1 = O
(
εr2

k−1

)
(3.16)

yields the equation r2 − 2r − 1 = 0. Its unique positive solution gives the order of
convergence r = 1+

√
2 of the modified Newton methods with memory (3.9)∧(3.6)

and (3.9)∧(3.7).

To find the convergence rate of the method (3.9)∧(3.8) we need an error estimate
of the approximating polynomial P.

Lemma 3.1. Ifγk is calculated by (3.8), than the estimate 1+2γk f ′(α) = O(εk−1) holds. In
particular, when the node wk−1 is not between nodes xk and xk−1, then at least 1+2γk f ′(α) =
O(ε2

k−1).

Proof. From the interpolation conditions (3.4) and Taylor’s expansion it follows

P′(xk) = P′(wk−1) + P′′(wk−1)(εk−1,w − εk) +O
(
(εk−1,w − εk)2

)
= f ′(wk−1) +O(εk−1,w) = f ′(α) +O(εk−1,w).

Hence, we have

1 + 2γk f ′(α) = 1 − f ′(α)
P′(xk)

= O(εk−1,w) = O(εk−1).(3.17)

Let us now explore the case when wk−1 is not between xk and xk−1.We introduce
a function F as the difference

F(t) = f (t) − P(t).

According to Roll’s Theorem, there exists a point

ζ1 = xk−1 + θ1(xk − xk−1), θ1 ∈ (0, 1),

between xk and xk−1 (different from wk−1) such that F′(ζ1) = 0. Once again due to
Roll’s Theorem, there exists a point

ζ2 = wk−1 + θ2(ζ1 − wk−1), θ2 ∈ (0, 1)

such that F′′(ζ2) = 0. Therefore, at least εζ j = ζ j − α = O(εk−1) holds for j = 1, 2.
Estimating the difference P′(xk) − f ′(xk) by Taylor’s series, we obtain

P′(xk) − f ′(xk) = F′(xk) = F′′(ζ1)(ζ1 − xk) +O
(
(ζ1 − xk)2

)
=
(
F′′′(ζ2)(ζ2 − ζ1) +O

(
(ζ2 − ζ1)2

))
(ζ1 − xk) +O

(
(ζ1 − xk)2

)
= f ′′′(ζ2)(εζ2 − εζ1 ) +O

(
(εζ2 − εζ1 )

2
))

(εζ1 − εk) +O
(
(εζ1 − εk)2

)
= O(ε2

k−1) (at least),
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that is, according to (2.3) and (1.5),

P′(xk) = f ′(α) +O(ε2
k−1) (at least).(3.18)

From (3.18) than it easily follows

1 + 2γk f ′(α) = 1 − f ′(α)
P′(xk)

= O
(
ε2

k−1

)
.(3.19)

Conclusions from the previous Lemma coincide with the spline form of an error
relation of the Hermit-Birkhoff interpolation [1].

Now we can state the following Theorem.

Theorem 3.2. When an initial approximation x0 is sufficiently close to the sought simple
zeroα of f , the order of convergence of the modified Newton method with memory (3.9)∧(3.8)
is not less than 1 +

√
2 ≈ 2.414, and with appropriate distribution of approximations it is

not less than 1 +
√

3 ≈ 2.732.

Proof. Let I = (min{xk−1, xk},max{xk−1, xk}). Similar to the proof of Theorem 3.1,
using relations from Lemma 3.1, (3.17) and (3.19) in the error relation (3.11), we ob-
tain quadratic equations that define orders of convergence of the modified method
with memory (3.9)∧(3.8)

r2 − 2r − 1 = 0, r = 1 +
√

2, wk−1 ∈ I,

and
r2 − 2r − 2 = 0, r = 1 +

√
3, wk−1 � I.

Although the error relation (3.10) holds and contains the term 1+ γk f ′(α), from
the error relation (3.11) we conclude that the improvement of approximation wk (as
it was done in [2] and [6]), does not result in improving xk+1 which is the ultimate
goal.

4. Numerical results

The computational efficiency of an iterative method (IM) of the order r, requiring
θnew function evaluations per iteration, is usually calculated by Ostrowski-Traub’s
formula

E(IM) = r1/θ
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(see [10, p. 20], [13, Appendix C]). Using this formula we find

E(1.1) = E(1.3) = 21/2 ≈ 1.414,
E(3.9) = (1 +

√
2)1/2 ≈ 1.554,

E(1.4) = E(3.9) = (1 +
√

3)1/2 ≈ 1.653.

where the last entry is obtained only with a special distribution of approxima-
tions. Recall that computational efficiency of any optimal three-step scheme (IM)
is E(IM) = 81/4 ≈ 1.682, see, for example, [11]. The obtained efficiency indices of
the proposed methods are very high.

Remark 4.1. We note that according to Herzberger’s matrix method [9], a one-step inter-
polatory iteration function with memory, which uses all the available information from
the previous and actual iteration, obtains the order of convergence at most 1

2 (3 +
√

17) for
iterations based on f evaluation, and 1 +

√
3 for iterations based on f and f ′ evaluation.

We have tested the new methods (2.2) and (3.9), along with the methods
(1.1), (1.3), and (1.4) using the computational software package Mathematica with
multiple-precision arithmetic. We selected the following four test functions:

f1(x) = e−x2+x+2 − cos(x + 1) + x3 + 1, α = −1, x0 = −1.7,
γ0 = −0.01, p0 = −0.01,

f2(x) = (x − 1)(x6 + x−6 + 4) sin x2, α = 1, x0 = 1.5, γ0 = −0.05, p0 = 0,

f3(x) =
12∏
i=1

(x − i), α = 8, x0 = 8.33, γ0 = 01, p0 = 0,

f4(x) = x + sin x +
1
x
− 1 + 2i, α ≈ 0.2886− i1.2422, x0 = −1 − 3i (i =

√−1),

γ0 = −0.05, p0 = −0.05.

The plot of the function f2 is shown in Figure 4.1. The function shows nontrivial
behavior since the graph is ofΠ-form and with a singularity and another zero close
to the sought zero.

Test function f3 is a polynomial of Wilkinson’s type with real zeros 1, 2, . . . , 12.A
well-known fact that these polynomials are ill-conditioned motivated us to choose
this test function. Wilkinson’s polynomials coefficients are of order of magnitude
of factorials of its zeroes, see Figure 4.2. This is the reason why small perturbations
of polynomial coefficients lead to drastic variations of polynomial zeros.

Complex test function f4 is used to show that the proposed methods are, as
expected, applicable in complex domain, even though entire convergence analysis
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Fig. 4.1: Graph of the function f2(x)
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Fig. 4.2: Graph of the function f3(x)

was undertaken under an assumption of the real domain. As noted by Geum
and Kim in [8], f4-kind of functions arise from the real life problems related to
steady-state heat flow, electrostatic potential and fluid flow.

We note that any multipoint method that uses Newton’s method (1.1) or Stef-
fensen’s method (1.2) as predictor steps, is unusual to show global convergence
qualities. However, slight improvement in basins of attraction can be achieved
with predictor methods such as (3.3) and methods from [6], by an adequate choice
of initial values for the parameters.

Very accurate initial approximations to the sought zero can be found using
recently developed efficient Yun’s method [15] based on numerical integration. In
this manner, information of the function f , used for determining the initial value x0

by the mentioned numerical integration, can be successively used for determining
a good starting value for γ0.

The errors |xk − α| of approximations to the zeros are given in Tables 1–4, where
A(−h) denotes A × 10−h. It is evident that approximations to the roots given in
Tables 4.1-4.4 possess great accuracy. Results of the fourth iteration are given only
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Table 4.1: One-point method without/with memory, test function f1

Methods |x1 − α| |x2 − α| |x3 − α| |x4 − α| rc (4.1)
(1.3) 1.37(−1) 9.28(−4) 1.36(−7) 2.88(−15) 2.00
(1.1) 1.49(−1) 8.40(−4) 1.18(−7) 2.33(−15) 2.00
(1.4) 1.49(−1) 1.98(−3) 8.96(−9) 3.48(−23) 2.70
(2.2) 1.24(−1) 9.16(−4) 1.24(−7) 2.24(−15) 2.00
(3.9)∧(3.6) 1.24(−1) 5.25(−4) 8.73(−10) 1.09(−23) 2.41
(3.9)∧(3.7) 1.24(−1) 3.67(−4) 3.26(−10) 1.09(−24) 2.38
(3.9)∧(3.8) 1.24(−1) 1.33(−5) 4.47(−13) 4.21(−35) 2.95

Table 4.2: One-point method without/with memory, test function f2

Methods |x1 − α| |x2 − α| |x3 − α| |x4 − α| rc (4.1)
(1.3) 1.04(−1) 1.19(−2) 1.42(−4) 1.94(−8) 2.00
(1.1) 9.98(−2) 1.57(−2) 3.37(−4) 1.46(−7) 2.01
(1.4) 9.98(−2) 2.90(−2) 8.56(−5) 1.16(−11) 2.73
(2.2) 8.44(−2) 2.99(−3) 5.73(−6) 2.09(−11) 2.00
(3.9)∧(3.6) 8.44(−2) 3.03(−3) 1.51(−6) 9.98(−15) 2.47
(3.9)∧(3.7) 8.44(−2) 3.10(−3) 1.05(−6) 5.71(−15) 2.38
(3.9)∧(3.8) 8.44(−2) 3.14(−3) 7.04(−7) 1.53(−16) 2.64

for demonstration of convergence speed of the tested methods and in most cases
they are not required for practical problems at present. These tables include the
values of the computational order of convergence rc calculated by the formula

rc =
log | f (xk)/ f (xk−1)|

log | f (xk−1)/ f (xk−2)| ,(4.1)

taking into consideration the last three approximations in the iterative process.

In Table 4.3 div. means that the method in the row is not convergent to the zero
α = 8. However, for the given initial value these methods neither converge to any
other zero of the Wilkinson’s polynomial.
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Table 4.3: One-point method without/with memory, test function f3

Methods |x1 − α| |x2 − α| |x3 − α| |x4 − α| rc (4.1)
(1.3) div.
(1.1) 7.22(−2) 3.97(−3) 7.84(−6) 3.14(−11) 2.00
(1.4) div.
(2.2) div.
(3.9)∧(3.6) 7.22(−2) 6.84(−4) 8.53(−9) 1.25(−20) 2.41
(3.9)∧(3.7) 7.22(−2) 1.13(−5) 2.93(−12) 2.52(−29) 2.59
(3.9)∧(3.8) 7.22(−2) 5.28(−4) 5.51(−10) 3.43(−24) 2.37

Table 4.4: One-point method without/with memory, test function f4

Methods |x1 − α| |x2 − α| |x3 − α| |x4 − α| rc (4.1)
(1.3) 9.69(−1) 1.77(−1) 3.67(−3) 2.31(−6) 1.89
(1.1) 1.29(0) 4.95(−1) 1.95(−2) 7.51(−5) 1.70
(1.4) 1.34(0) 1.48(−1) 3.05(−4) 1.88(−10) 2.32
(2.2) 7.29(−1) 6.71(−2) 5.61(−4) 4.30(−8) 1.97
(3.9)∧(3.6) 7.29(−1) 6.27(−2) 1.51(−4) 6.79(−11) 2.42
(3.9)∧(3.7) 7.29(−1) 5.78(−2) 9.29(−5) 2.00(−11) 2.38
(3.9)∧(3.8) 7.29(−1) 6.05(−2) 1.08(−4) 3.24(−12) 2.74

R E F E R E N C E S

1. G. D. Birkhoff: General mean-value and remainder theorems with applications to me-
chanical differentiation and integration. Trans. Amer. Math. Soc. 1 (1906), 107–136.
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