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Abstract An iterative method for the simultaneous determination of multiple zeros
of algebraic polynomials is stated. This method is more efficient compared to
all existing simultaneous methods based on fixed point relations. To attain very
high computational efficiency, a suitable correction resulting from Li-Liao-Cheng’s
two-point fourth-order method of low computational complexity is applied. The
presented convergence analysis shows that the convergence rate of the basic method
is increased from three to six using this special type of correction and applying
only � additional polynomial evaluations per iteration, where � is the number
of distinct zeros. Computational aspects and some numerical examples are given
to demonstrate high computational efficiency and very fast convergence of the
proposed method.

1 Introduction

The aim of this paper is to construct an iterative method for the simultaneous
determination of all multiple zeros of a polynomial with a very high computational
efficiency. Actually, the proposed method is ranked as the most efficient among
existing methods in the class of simultaneous methods for approximating polyno-
mial multiple zeros based on fixed point relations. The presented iterative formula
relies on the fixed point relation of Gargantini’s type [3]. A very high computational
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efficiency is attained by employing suitable corrections which enable very fast
convergence (equal to six) with minimal additional computational costs. In fact,
these corrections arise from Li-Liao-Cheng’s two-point root-solver [4] with optimal
order of convergence four. More details about multi-point methods may be found,
e.g., in [8] and [10].

The paper is organized as follows. In Sect. 2 we present the improved iterative
method for the simultaneous determination of polynomial multiple zeros, starting
from a suitable fixed-point relation. The convergence theorem stated in Sect. 3
asserts that the convergence order of the proposed method is six. Finally, Sect. 4
contains an analysis of computational efficiency which shows that the proposed
simultaneous method is the most efficient among all existing methods based on
fixed point relations. In addition, two numerical examples are given to demonstrate
exceptional convergence speed of the proposed method.

2 Accelerated Simultaneous Method

Let f .z/ D Q�
j D1.z � �j /�j be a monic polynomial of degree n with multiple real

or complex zeros �1; : : : ; �� of respective multiplicities �1; : : : ; �� .� � n/; and let

u.z/ D f .z/

f 0.z/
D
h d

d z
log f .z/

i�1 D
� �X

j D1

�j

z � �j

��1

: (1)

To construct an iterative method for the simultaneous determination of polynomial
multiple zeros, we single out the term z � � from (1) and derive the following fixed
point relation

�i D z � �i

1
u.z/ � P

j 2��
j ¤i

�j

z��j

.i 2 I� WD f1; : : : ; �g/: (2)

This relation was used in [3] for the construction of iterative methods for the
simultaneous inclusion of multiple zeros of polynomials in complex circular
arithmetic.

Let z1; : : : ; z� be distinct approximations to the zeros �1; : : : ; ��: Setting z D zi

and substituting the zeros �j by some approximations z�
j in the right-hand side of

(2), one obtains the following iterative method

Ozi D zi � �i

1

u.zi /
�
X

j 2��
j ¤i

�j

zi � z�
j

.i 2 I�/ (3)
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for the simultaneous determination of all multiple zeros of the polynomial f: Here
Ozi denotes a new approximation to the zero �i : The choice z�

j D zj in (3) gives the
third-order method of Ehrlich-Aberth’s type for multiple zeros

Ozi D zi � �i

1

u.zi /
�
X

j 2��
j ¤i

�j

zi � zj

.i 2 I�/; (4)

see [1, 2]. Furthermore, putting Schröder’s approximations z�
j D zj � �j u.zj / in

(3), the following accelerated method of the fourth order is obtained (see [5]),

Ozi D zi � �i

1

u.zi /
�
X

j 2��
j ¤i

�j

zi � zj C �j u.zj /

.i 2 I�/: (5)

Note that the iterative method (5) reduces to Nourein’s method [6] in the case of
simple zeros.

Regarding (2)–(5), it is evident that the better approximations z�
j give the more

accurate approximations Ozi : Indeed, if z�
j ! �j then the right-hand side of (3) tends

to �i : We apply this idea to construct a higher order method.
The iterative method (5) of the fourth order is obtained using Schröder’s method

z�
j D zj � �j u.zj / of the second order. Further acceleration of the convergence

speed can be obtained by using methods of higher order for finding a single multiple
zero. In this paper we use the following two-point method for solving nonlinear
equations proposed in [4]

Oz D z � u.z/ � ˇ C � t.z/

1 C ıt.z/
; t.z/ D f 0.z � �u.z//

f 0.z/
; (6)

where

� D 2m

m C 2
; ˇ D �m2

2
; � D m.m � 2/

2

� m

m C 2

��m

; ı D �
� m

m C 2

��m

and m is the multiplicity of the wanted zero � of a function f (not necessarily
algebraic polynomial in general). The order of convergence of the iterative method
(6) is four, that is,

Oz � � D OM

�
.z � �/4

�
(7)

holds (for the proof, see [4]). Here OM is a symbol which points to the fact that
two complex numbers w1 and w2 have moduli of the same order (that is, jw1j D
O.jw2j/; O is the Landau symbol), written as w1 D OM .w2/:

In the sequel, we substitute z by the approximation zj of �j and m by the
corresponding multiplicity �j of �j : The approximation z�

j appearing in (3) is
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calculated by (6), that is,

z�
j D zj � uj � ˇj C �j tj

1 C ıj tj
;

where we put uj D u.zj /; tj D f 0.zj � �j uj /=f 0.zj / and

�j D 2�j

�j C 2
; ˇj D ��2

j

2
; �j D �j .�j � 2/

2

� �j

�j C 2

�
��j

; ıj D �
� �j

�j C 2

�
��j

:

Now, from (3) we obtain a new method for the simultaneous approximation of all
simple or multiple zeros of a given polynomial,

Ozi D zi � �i

1

u.zi /
�
X

j 2��
j ¤i

�j

zi � zj C uj � ˇj C�j tj
1Cıj tj

.i 2 I�/: (8)

3 Convergence Theorem

Theorem 1. If initial approximations z1; : : : ; z� are sufficiently close to the distinct
zeros �1; : : : ; �� of a given polynomial, then the order of convergence of the
simultaneous method (8) is six.

Proof. Let us introduce the errors of approximations "j D zj � �j ; O"j D Ozj � �j :

According to the conditions of Theorem 1, we can assume that "i D OM ."j / for
any pair i; j 2 I�: Let " 2 f"1; : : : ; "ng be the error of maximal modulus with
"j D OM ."/ .j 2 I�/:

For brevity, let

z�
j D zj � uj � ˇj C �j tj

1 C ıj tj
; di D

X

j 2��
j ¤i

�j .z�
j � �j /

.zi � �j /.zi � z�
j /

:

Then, starting from (8) and using (1) we obtain

Ozi D zi � �i

�i

"i

C
X

j 2��
j ¤i

�j

zi � �j

�
X

j 2��
j ¤i

�j

zi � z�
j

D zi � �i "i

�i � "idi

; (9)

and hence

O"i D Ozi � �i D "i � �i "i

�i � "idi

D �"2
i di

�i � "i di

: (10)
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According to (7) we have di D OM ."4/ and from (10) we find

O" D OM ."6/;

since the denominator of (10) tends to �i when "i ! 0: Therefore, the order of
convergence of the simultaneous method (8) is six. ut

4 Computational Aspects

From a practical point of view, it is of great importance to estimate the computa-
tional efficiency of any iterative root-finding method since it is closely connected to
the features such as the number of necessary numerical operations in computing
the zeros with the required accuracy, the convergence speed, processor time of
a computer, etc. The knowledge of the computational efficiency is of particular
interest in designing a package of root-solvers. More details about this topic may
be found in [7, Chap. 6].

In this section we compare the convergence behavior and computational effi-
ciency of the methods (4), (5) and the new simultaneous method (8). This com-
parison procedure is entirely justified since the analysis of efficiency given in [7,
Chap. 6] for several computing machines showed that the method (5) has the highest
computational efficiency in the class of simultaneous methods based on fixed point
relations.

Comparing the iterative formulas (5) and (8) we observe that the new formula
(8) requires � new polynomial evaluations per iterations in relation to (5). Hence
we conclude that the minimal computational efficiency of the iterative method (8)
appears when � D n; that is, when all zeros are simple. For this reason we will
consider this “worst case” in our computational analysis. In a similar way as in [9]
and several other papers in the topic, we estimated computational efficiency of the
iterative methods (4), (5) and (8) using the efficiency index given by

E.IM/ D log r

d
; (11)

where r is the order of convergence of the iterative method (IM), and d is its
computational cost. The computation cost d is evaluated using the total number
of basic arithmetic operations per iteration taken with certain weights depending on
the execution times of operations, see [9] for details.

We calculated the percent ratios

�8;4.n/ D .E..8/; n/=E..4/; n/ � 1/ � 100 .in %/; (F/EA %)

�8;5.n/ D .E..8/; n/=E..5/; n/ � 1/ � 100 . in %/; (F/N%)
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Fig. 1 Ratios of efficiency indices

where EA, N and F stand for the method (4) of Ehrlich-Aberth’s type, the method (5)
of Nourein’s type and the new method (8), respectively. These ratios are graphically
displayed in Fig. 1 as the functions of the polynomial degree n and show the
(percent) improvement of computational efficiency of the new method (8) in relation
to the methods (4) and (5). In Fig. 1 �8;4.n/ is drawn by full line and �8;5.n/ by
dotted line.

It is evident from Fig. 1 that the new method (8) is more efficient than the methods
(4) and (5). The improvement is especially expressive in regard to the method (4)
of Ehrlich-Aberth’s type (F/EA % – full line). Having in mind the mentioned fact
on the dominant efficiency of the Nourein-like method, it follows that the proposed
family of simultaneous methods (8) is the most efficient method for the simultaneous
determination of polynomial multiple zeros in the class of methods based on fixed
point relations.

To demonstrate the convergence behavior of the methods (4), (5) and (8), we
tested a number of polynomial equations; for illustration, among a number of tested
algebraic polynomials we selected two examples. To present the results of the
third iteration, we applied the computational software package Mathematica with
multiple-precision arithmetic.

As a measure of accuracy of the obtained approximations, we calculated Euclid’s
norm

e.m/ WD jjz.m/ � �jj2 D
 

�X

iD1

ˇ
ˇz.m/

i � �i

ˇ
ˇ2
!1=2

.m D 0; 1; : : :/;

where z.m/ D �
z.m/
1 ; : : : ; z.m/

�

�
and � D .�1; : : : ; ��/:
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Table 1 Euclid’s norm of the errors – Example 1

Methods ! (4) (5) (8)

e.1/ 2.81(�1) 1.62(�1) 1.80(�1)
e.2/ 2.61(�3) 6.00(�5) 9.03(�7)
e.3/ 2.93(�9) 1.92(�18) 1.21(�39)

Table 2 Euclid’s norm of the errors – Example 2

Methods ! (4) (5) (8)

e.1/ 1.10(�1) 5.57(�2) 2.18(�2)
e.2/ 7.24(�5) 2.38(�7) 7.44(�13)
e.3/ 1.64(�14) 3.34(�29) 3.65(�75)

Example 1. Methods (4), (5) and (8) were applied for the simultaneous approxima-
tion to the zeros of the polynomial

f18.z/ D .z C 1/2.z C 2/3.z2 � 2z C 2/2.z2 C 1/2.z � 2/3.z C 2 � i/2:

The following starting approximations were selected (e.0/ � 1:50)

z.0/
1 D �1:3 C 0:2i; z.0/

2 D �2:2 � 0:3i; z.0/
3 D 1:3 C 1:2i; z.0/

4 D 0:7 � 1:2i;

z.0/
5 D �0:2 C 0:8i; z.0/

6 D 0:2 � 1:3i; z.0/
7 D 2:2 � 0:3i; z.0/

8 D �2:2 C 0:7i:

The entries of the maximal errors obtained in the first three iterations are given in
Table 1.

Example 2. In order to find the zeros of the polynomial

f20.z/ D .z C 1/2.z C 3/3.z2 � 2z C 2/2.z � 1/3.z2 � 4z C 5/2.z2 C 4z C 5/2;

we applied the same methods. The starting approximations were (e.0/ � 1:43)

z.0/
1 D �1:3 C 0:2i; z.0/

2 D �2:8 � 0:2i; z.0/
3 D 1:2 C 1:3i;

z.0/
4 D 0:8 � 1:2i; z.0/

5 D 0:8 � 0:3i; z.0/
6 D �1:8 C 1:2i;

z.0/
7 D �1:8 � 1:2i; z.0/

8 D 1:8 C 0:8i; z.0/
9 D 1:8 � 1:2i:

The entries of the maximal errors obtained in the first three iterations are given in
Table 2.

From Tables 1 and 2 and a number of tested polynomial equations we can
conclude that the proposed family (8) produces approximations of considerably
great accuracy; two iterative steps are usually sufficient in solving most prac-
tical problems when initial approximations are reasonably close to the zeros.
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The presented analysis of computational efficiency shows that the family (8) is more
efficient than all existing methods for multiple zeros based on fixed point relations.
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