
Author's personal copy

Computers and Mathematics with Applications 59 (2010) 2784–2793

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Accelerating generators of iterative methods for finding multiple roots
of nonlinear equationsI

M.S. Petković a,∗, L.D. Petković b, J. Džunić a
a Faculty of Electronic Engineering, Department of Mathematics, University of Niš, 18000 Niš, Serbia
b Faculty of Mechanical Engineering, Department of Mathematics, University of Niš, 18000 Niš, Serbia

a r t i c l e i n f o

Article history:
Received 30 July 2009
Received in revised form 19 January 2010
Accepted 19 January 2010

Keywords:
Solving nonlinear equations
Iterative methods
Multiple roots
Acceleration of convergence
Simultaneous methods

a b s t r a c t

Two accelerating generators that produce iterative root-findingmethods of arbitrary order
of convergence are presented. Primary attention is paid to algorithms for finding multiple
roots of nonlinear functions and, in particular, of algebraic polynomials. First, two classes
of algorithms for solving nonlinear equations are studied: those with a known order of
multiplicity and others with no information on multiplicity. We also demonstrate the
acceleration of iterative methods for the simultaneous approximations of multiple roots of
algebraic polynomials. A discussion about the computational efficiency of the root-solvers
considered and three numerical examples are given.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we consider various classes of iterative methods for finding multiple roots of nonlinear equations. We
derive several new root-finding methods of a higher order for multiple roots of nonlinear functions and all multiple roots of
algebraic polynomials in parallel mode. All of these methods are produced by suitable accelerating generators of iterative
functions. An iterative method ϕr+1 of order r + 1 is generated from the previous method ϕr of order r using a special
transformation. The sequence of methods ϕ2, ϕ3, . . . , ϕn, . . . can be derived automatically using symbolic computation (in
Mathematica, MATLAB orMaple).
In Section 2 we present an accelerating formula for generating a sequence of iterative methods for determining multiple

roots of equations of the form f (x) = 0. Using this generating formula, in Section 3 we derive several higher-order iterative
methods, some of which are new ones. We distinguish two kinds of methods; those which deal with a known order of
multiplicity and others with no information on multiplicity. In Section 4 we describe a new technique for generating some
classes of iterative methods, based on the Weierstrass function, for the simultaneous determination of multiple roots of
algebraic polynomials. Numerical examples are given in Section 5 to demonstrate the convergence behavior of the methods
considered. This section also contains an analysis of the computational efficiency of the methods presented.

2. Accelerating generators of iterative methods

In this paper we shall restrict our attention to iterative methods of a higher order for finding multiple roots of nonlinear
functions. To produce these methods, we use a suitable formula for the acceleration of convergence, which shall henceforth
be termed the accelerating generator, or shorterAG.

I This work was supported by the Serbian Ministry of Science under grant 144024.
∗ Corresponding author.
E-mail addresses:msp@junis.ni.ac.rs, msp@eunet.rs (M.S. Petković).

0898-1221/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2010.01.048

Author's personal copy

M.S. Petković et al. / Computers and Mathematics with Applications 59 (2010) 2784–2793 2785

In our consideration we make use of the following well-known theorem from the theory of iterative processes.

Theorem 1 (Traub [1, Theorem 2.2]). Let φ be an iterative function such that φ and its derivatives φ′, . . . , φ(r) are continuous
in the neighborhood of a root α of a given function f . Then φ defines an iterative method of order r if and only if

ϕ(α) = α, ϕ′(α) = · · · = ϕ(r−1)(α) = 0, ϕ(r)(α) 6= 0. (1)

The following theorem is concerned with the acceleration of iterative methods, forming the base for generating higher-
order methods for multiple roots.

Theorem 2. Let xk+1 = ϕr(xk) (k = 0, 1, . . .) be an iterative method of order r for finding a simple or multiple root of a given
function f (sufficiently many times differentiable). Then the iterative method defined by

xk+1 = ϕr+1(xk) := xk −
xk − ϕr(xk)
1− 1

r ϕ
′
r(xk)

(r ≥ 2; k = 0, 1, . . .), (2)

has the order of convergence r + 1.

Proof. For two real or complex numbers z andwwewill write z = OM(w) if |z| = O (|w|) (the same order of their moduli),
where O represents the Landau symbol.
Let us introduce the error εk = xk − α. Bearing in mind the relations (1), we find by Taylor’s series

ϕr(xk) = α +
1
r!
ϕ(r)r (α)ε

r
k + OM(ε

r+1
k), (3)

and

ϕ′r(xk) =
1

(r − 1)!
ϕ(r)r (α)ε

r−1
k + OM(ε

r
k). (4)

From (3) we see that

ϕr(xk)− α = OM((xk − α)r) = OM(εrk), (5)

meaning that the method xk+1 = ϕr(xk)(k = 0, 1, . . .) has order of convergence r (≥2), as assumed in Theorem 2.
Using (3) and (4) we obtain

1
r
ϕ′r(xk)(xk − ϕr(xk)) =

1
r
ϕ′r(xk)(xk − α − (ϕr(xk)− α))

=
1
r!
ϕ(r)r (α)ε

r
k −

(
1
r!
ϕ(r)r (α)

)2
ε2r−1k + OM(εr+1k)

=
1
r!
ϕ(r)r (α)ε

r
k + OM(ε

r+1
k). (6)

By virtue of (3) and (6), we get

ϕr(xk)−
1
r
ϕ′r(xk)(xk − ϕr(xk)) = α + OM(ε

r+1
k). (7)

In our analysis we assume that xk is sufficiently close to the root α, meaning that |εk| = |xk − α| is sufficiently small.
According to (4) we conclude that |ϕ′r(xk)| = OM(|ε

r−1
k |) is also a very small quantity so that the following development into

a geometric series

1
1− 1

r ϕ
′
r(xk)

= 1+
1
r
ϕ′r(xk)+ OM(ε

2r−2
k) (8)

holds. Then, using (7) and (8) and the fact that xk − φr(xk) = OM(εk), we obtain

ϕr+1(xk) := xk −
xk − ϕr(xk)
1− 1

r ϕ
′
r(xk)

= ϕr(xk)−
1
r
ϕ′r(xk)(xk − ϕr(xk))+ OM(ε

2r−1
k)

= α + OM

(
max
r≥2
{|εk|

r+1, |εk|
2r−1
}

)
= α + OM(εr+1k),

that is,

ϕr+1(xk)− α = OM(εr+1k) (r ≥ 2),

meaning that order of convergence of the iterative method (2) is r + 1. �

Author's personal copy

2786 M.S. Petković et al. / Computers and Mathematics with Applications 59 (2010) 2784–2793

Remark 1. The iterative formula (2) can be derived in several manners. The following one is quite simple: omitting aside
OM(εr+1k) and replacing the root α by a new approximation xk+1 in (7), we get

xk+1 = ϕr(xk)−
1
r
ϕ′r(xk)(xk − ϕr(xk)), (9)

assuming that xk+1 is a better approximation to α than xk. Substituting ϕr(xk) = xk+1 in the second term of (9) and solving
the equation

xk+1 = ϕr(xk)−
1
r
ϕ′r(xk)(xk − xk+1)

in xk+1, we obtain the iterative formula (2).

Remark 2. The ability of AG (2) to produce root-finding methods of an arbitrary order of convergence (see Theorem 2) is
the main advantage of the generating formula (2). Furthermore,AG (2) can generate iterative formulas both for simple and
multiple roots without alternation to its structure; it is sufficient to start with a suitably chosen initial iterative function
ϕr(x) (r ≥ 2).

Note that some relations utilized in the proof of Theorem 2 have appeared in the literature dealing with normed vector
spaces (for example, see [2]). In this paper we deal with the space of complex numbers C and demonstrate howAG (2) can
be successfully applied to generate accelerated root-finding methods. For example, proceeding from the Newton method

ϕ2(x) = Nf (x) = x−
f (x)
f ′(x)

= x− u(x) (10)

and applying (2), we obtain Halley’s third-order method

ϕ3(x) = Hf (x) = x−
f (x)

f ′(x)− f (x)f ′′(x)
2f ′(x)

,

assuming that methods Nf and Hf are applied to simple roots. At present, however, we shall restrict our consideration to
accelerated methods for approximating multiple roots since this problem is rarely studied in the literature.

3. Applications to multiple roots

Following the derivation of (2) we observe that no assumptions on the order of the multiplicity of the root of f were
imposed. Therefore, we can applyAG (2) to generate iterative methods of an arbitrary order of convergence for finding not
only simple roots, but also multiple roots of nonlinear functions without any modification. This is a significant advantage of
AG (2) in reference to existing generating formulas.
We will consider two classes of methods for finding multiple roots, categorized thus: (I)—methods where multiplicity is

known, (II)—methods where multiplicity is unknown. In addition, we will also demonstrate the acceleration of convergence
of simultaneous methods for finding all multiple roots of a polynomial with known multiplicities (Section 4). We wrote a
simple program in the programming packageMathematica that generates iterative functions for an arbitrary r , but we omit
cumbersome iterative methods of very high order to save space.
(I)Multiplicity is known
Letm be the order of multiplicity of the desired root α of a given function f , and let us introduce the notation

u = u(x) =
f (x)
f ′(x)

, Cr = Cr(x) =
f (r)(x)
r!f ′(x)

(r = 1, 2, . . .).

Starting from a modified Newton method (derived by Schröder [3, p. 324] in 1870) of the second order

ϕ2(x) = x−m
f (x)
f ′(x)

= x−mu(x), (11)

byAG (2) we obtain the third-order Halley-like method for multiple roots

ϕ3(x) = x−
x− ϕ2(x)
1− 1

2ϕ
′

2(x)
= x−

mu(x)
1
2 (1+m)−mC2(x)u(x)

. (12)

Continuing this process of the acceleration of convergence, we find by (2) (omitting argument x for brevity)

ϕ4(x) = x−
mu

[1
2 (1+m)−mC2u

]
1
3! (1+m)(1+ 2m)−m(1+m)C2u+m

2C3u2

ϕ5(x) = x−
mu[(1+m)(1+ 2m)/3! −m(1+m)C2u+m2C3u2]

1
4! (1+m)(1+ 2m)(1+ 3m)−

1
2! (1+m)(1+ 2m)C2u+ (1+m)

[
C3 + 1

2C
2
2

]
m2u2 −m3C4u3

,

etc.

Author's personal copy

M.S. Petković et al. / Computers and Mathematics with Applications 59 (2010) 2784–2793 2787

Remark 3. The above formulasϕ4 andϕ5may be regarded as rediscovered formulas since theywere derived originally in [4]
using a different approach.

Remark 4. It was proved in [5] that, in the case of simple roots,AG (2)m=1 is equivalent to Schröder’s method of the second
kind [3] (see [6] for a translation of this fundamental work of Schröder), sometimes called Schröder–König’s method (see,
e.g., [7,8])

Sr(x) = x− u(x)
Qr−2(x)
Qr−1(x)

, (r ≥ 2), (13)

where Qk is calculated by the recurrence relation

Q0(x) = 1, Qk(x) =
k∑
λ=1

(−1)λ+1u(x)λ−1Cλ(x)Qk−λ(x), C1(x) = 1, (k ≥ 1).

A modification of Schröder–König’s method (13) for multiple roots is given in [1, Lemma 7.1] byAG

Fr+1(x,m) = Fr(x,m)−
mu(x)
r

F ′r(x,m), F2(x,m) = x−mu(x), r ≥ 2. (14)

For r = 2, generating formula (14) produces a Chebyshev-like method of the third order

ϕ̃3(x) = x−mu(x)[(3−m)/2+mC2(x)u(x)], (15)

and so on. Form = 1 (being the case of a simple root)AG (14) generates the same iterative methods asAG (13).

Remark 5. Regarding the iterative formula (9) it seems natural that it would also generate higher-ordermethods. This holds
for the first generated method of the third order (of the Chebyshev type) ϕ̃3 given by (15) (taking ϕ2 = x − mu(x) in (9)).
In the continuation, the generating formula (9) produces iterative methods of order r + 1; however, due to superfluous
‘‘parasite’’ terms they are quite cumbersome. Assuming that both formulas (9) and (14) start with ϕ2 = x − mu(x), it is
preferable to use Traub’s generating relation (14) than (9). This subject was discussed in [9].

AG (2) and some existing third-order methods for multiple roots can be combined to produce newmethods. We provide
three examples. First, using the Chebyshev-likemethod (15) of the third order inAG (2), we obtain the fourth-ordermethod

ϕ∗4 (x) = x−
3mu(x)[3−m+ 2mC2(x)u(x)]

4+ 3m−m2 + 6m(m− 1)C2(x)u(x)+ 6m2[C3(x)− 2C2(x)2]u(x)2
. (16)

Another sequence of iterative methods for finding multiple roots can be derived starting with Osada’s third-order
method [10]

η3(x) = x−
1
2
m(m+ 1)

f (x)
f ′(x)
+
1
2
(m− 1)2

f ′(x)
f ′′(x)

. (17)

UsingAG (2) we derive the fourth-order method

η4(x) = x−
3C2(x)[(m− 1)2 − 2m(m+ 1)u(x)C2(x)]

4m(m+ 1)u(x)C2(x)3 − 6(m+ 1)C2(x)2 − 3(m− 1)2C3(x)
. (18)

It is assumed thatm 6= 1 in (17), otherwise (17) reduces to the Newton method (10).
By combining Ostrowski’s third-order method

ω3(x) = x−
√
mu(x)

√
1− 2u(x)C2(x)

(19)

andAG (2), we generate the fourth-order method

ω4(x) = x−
3
√
mu(x)[1− 2u(x)C2(x)]

2[1− 2u(x)C2(x)]3/2 +
√
m[1− 3u(x)C2(x)] + 3

√
mu(x)2C3(x)

. (20)

We have found no previous derivation of the iterative methods (16), (18) and (20).
Using recently derived third-order methods for multiple roots (see, e.g., the papers [10–14] and the references cited

therein), one may continue further construction of new higher-order methods.

Author's personal copy

2788 M.S. Petković et al. / Computers and Mathematics with Applications 59 (2010) 2784–2793

(II)Multiplicity is unknown
We shall now consider the application of AG (2) to the case when the order of multiplicity is not known. Let α be a

multiple root of a function f (x), then α is a simple root of the function f (x)/f ′(x). Applying the Newton method (10) to the
function u(x) = f (x)/f ′(x), we obtain the iterative method

ψ2(x) = x−
f (x)f ′(x)

f ′(x)2 − f (x)f ′′(x)
= x−

u(x)
1− 2C2(x)u(x)

, (21)

which converges quadratically. Taking ϕ2(x) = ψ2(x) in (2) we obtain the accelerated method

ψ3(x) = x−
u(x)[1− 2C2(x)u(x)]

1− 3C2(x)u(x)+ 3C3(x)u(x)2
(22)

with a cubic convergence. The next method of the fourth order is obtained using ψ3 in (2),

ψ4(x) = x−
u(x)[1− 3C2(x)u(x)+ 3C3(x)u(x)2]

1− 4C2(x)u(x)+ 4[2C3(x)+ C2(x)2]u(x)2 − 4C4(x)u(x)3
. (23)

While we can continue to generate higher-order methods using ψ4 in (2), and so on, these iterative formulas are rather
cumbersome.
Note that the initial iterative function

ψ2(x) = x−
f (x)f ′(x)

f ′(x)2 − f (x)f ′′(x)
(given by (21)) allows us to rewriteAG (2) in the form

ψr(x) = x+ (r − 1)f (x)
Tr−2(x)
Tr−1(x)

(r ≥ 2),

where Tr is defined by the recurrence relation

Tr−1(x) = T ′r−2(x)f (x)− (r − 1)Tr−2(x)f
′(x), T0(x) = f ′(x).

Remark 6. Existing literature has attributed the modified Newton method (21) to various authors. However, Schröder was
the first to derive this method in his paper [3] (see, also, Stewart’s English translation [6]).

4. Simultaneous methods for multiple roots

Let P be a polynomial of degree n having real or complex roots α1, . . . , αν (ν ≤ n) with the respective multiplicities
µ1, . . . , µν , and let x1, . . . , xν be approximations to these roots. Now we will show that a modified AG (2) can be also
applied to the acceleration of iterativemethods for simultaneously determining all of themultiple roots of a polynomial. Let
us first note that the accelerating generator (2) cannot be applied directly to simultaneous methods since Theorem 1 does
not hold for simultaneous methods. In this section we provide a new and effective approach for accelerating simultaneous
methods.
To demonstrate, we will consider the acceleration of a class of simultaneous methods derived by using the so-called

Weierstrass function

Wi(x) =
P(x)∏

j∈Iν\{i}
(x− xj)µj

(i ∈ Iν := {1, . . . , ν}), (24)

(see [15]). Let us consider a class of iterative methods of order r of the form

x̂ = ψr(x; P/P ′, P ′′/P ′, . . . , P (r−1)/P ′) = ψr(x; u, C2, . . . , Cr−1) (25)

for finding a single root of the polynomial P , which depends explicitly on the first r − 1 derivatives of P . Recall that the
order of convergence of such a one-point method cannot be greater than r; see Traub [1, Theorem 5.3]. Similarly to the
coefficients Cr and the Newton correction u(x) = P(x)/P ′(x) used in Section 3, we define coefficients Cr,i = W

(r)
i /(r!W

′

i)
and Newton-like corrections ui = Wi/W ′i , where

Wi = Wi(xi), W (k)
i = (Wi(x))

(k)
x=xi (k = 1, . . . , r − 1).

It is obvious that the Weierstrass functionWi(x) and the polynomial P(x) in (24) have the same roots. This means that
the iterative formula (25) will produce the same approximations to the root αi ofWi(x), so that we can modify (25) to the
form

x̂i = ψr(xi;Wi/W ′i ,W
′′

i /W
′

i , . . . ,W
(r−1)
i /W ′i) = ψr(xi; ui, C2,i, . . . , Cr−1,i). (26)

Author's personal copy

M.S. Petković et al. / Computers and Mathematics with Applications 59 (2010) 2784–2793 2789

We assume that approximations x1, . . . , xi−1, xi+1, . . . , xν are temporarily fixed. Since the iterative formula (26) serves for
finding a single zero, we can applyAG (2) to the iterative function (26) to obtain

ψr+1(xi) = xi −
(xi − ψr(xi))
1− 1

rψ
′
r(xi)

(i ∈ Iν), (27)

where we write ψr(xi) instead of ψr(xi; ui, C2,i, . . . , Cr−1,i) for the sake of brevity.
The quantities ui, C2,i, . . . , Cr−1,i in (26) are calculated in the following manner. Using the logarithmic derivative and the

abbreviations

δr(x) =
P (r)(x)
P(x)

, δr,i = δr(xi), Sr,i(x) =
∑
j∈Iν\{i}

µj

(x− xj)r
, Sr,i = Sr,i(xi),

yr,i =
[
dr

dxr
(logWi(x))

]
x=xi

(r = 1, 2, . . .),

we find

y1,i = δ1,i − S1,i, y2,i = δ2,i − δ21,i + S2,i, y3,i = 2δ31,i − 3δ1,iδ2,i + δ3,i − 2S3,i, etc.

A simple calculation yields

ui =
1
y1,i
, C2,i =

1
2

(
y1,i +

y2,i
y1,i

)
, C3,i =

1
6

(
y21,i + 3y2,i +

y3,i
y1,i

)
, etc. (28)

Now let us apply the iterative formula (26) for all i = 1, . . . , ν in parallel. Then all approximations involved in sums,
appearing in yr,i, are improved simultaneously, leading to the increase of the convergence order of the simultaneousmethod
(26) by one related to the one-point method (25); see [15]. This means that simultaneous iterating transforms the iterative
functionψr(xi) of order r into a new iterative functionΨr+1(xi) of order r+1, modifying (27) in this way to the accelerating
generator for simultaneous methods

Ψr+2(xi) = xi −
(xi − Ψr+1(xi))
1− 1

r Ψ
′

r+1(xi)
(i = 1, . . . , ν). (29)

The above accelerating technique will be applied to classes of simultaneous methods based on the Newton, Halley and
Chebyshev methods for finding multiple zeros, given by the iterative formulas (11), (12) and (15), respectively.
Let f ≡ P be a polynomial of degree n in the modified Newtonmethod (11). SubstitutingWi(x) andW ′i (x) instead of P(x)

and P ′(x) in (11), we obtain

x̂ = g2,i(x) := x− µi(δ1(x)− S1,i(x))−1. (30)

Assuming that approximations to the roots α1, . . . , αi−1, αi+1, . . . , αν are fixed and x is an approximation to a single root
α = αi, the method (30) is of the second order. However, a simultaneous approximation of all roots by the iterative method
(30) transforms g2,i into the following simultaneous method

x̂i = G3,i(xi) = xi − µi(δ1,i − S1,i)−1 = xi −
µi

y1,i
(i = 1, . . . , ν). (31)

This is the well-known Ehrlich–Aberth method of the third-order [16,17], one of the most efficient and frequently used
simultaneous methods. Here, x̂1, . . . , x̂ν represent new approximations to the roots α1, . . . , αν .
By differentiating (30) we find

g ′2,i(x) = 1+
µi(δ2(x)− δ1(x)2 + S2,i(x))

(δ1(x)− S1,i(x))2
.

Replacing g2,i and g ′2,i in (27) yields

g3,i(x) = x−
µi(δ1(x)− S1,i(x))−1

1− 1
2g
′

2,i(x)
= x−

2µi(δ1(x)− S1,i(x))−1

1− µi
h2(x)−δ1(x)2+S2,i(x)
(δ1(x)−S1,i(x))2

= x−
2µi(δ1(x)− S1,i(x))(

δ1(x)− S1,i(x)
)2
− µi(δ2(x)− δ1(x)2 + S2,i(x))

.

Putting x = xi in the last relation, we obtain the fourth-order method for the simultaneous determination of multiple roots
of a polynomial,

x̂i = G4,i(xi) = xi −
2µi(δ1,i − S1,i)

(δ1,i − S1,i)2 − µi(δ2,i − δ21,i + S2,i)
= xi −

2µiy1,i
y21,i − µiy2,i

(i ∈ Iν), (32)

Author's personal copy

2790 M.S. Petković et al. / Computers and Mathematics with Applications 59 (2010) 2784–2793

assuming that all approximations x̂1, . . . , x̂ν are calculated in the parallel mode. Recall that we put r = 2 in (29) since the
Ehrlich–Aberth method (31) is derived from the second-order Newton method (11).
The following new fifth-order simultaneous method arises from the method G4,i by usingAG (29),

G5,i(xi) = xi −
3µi(y21,i − µiy2,i)

y31,i − 3µiy1,iy2,i + µ
2
i y3,i

(i ∈ Iν). (33)

We could continue in this vein with the accelerating procedure to construct a simultaneous method of higher order, but we
shall conclude here to save space; the industrious reader may certainly proceed. Bearing in mind that the Ehrlich–Aberth
method (31) is used as the base for generating methods (32) and (33), we shall refer to these methods as the Ehrlich–Aberth
type.
Consider next another new sequence of simultaneous iterative methods originating from the Chebyshev method (15)

using AG (29). Substituting u(x) by ui = 1/y1,i and C2(x) by C2,i = 1
2 (y1,i + y2,i/y1,i) in (15), we obtain the fourth-order

method

H4,i(xi) = xi −
µi

2y31,i
(3y21,i + µiy2,i) (i ∈ Iν). (34)

In a similar manner to the above, using the iterative formula (34) and AG (29), we derive the fifth-order simultaneous
method

H5,i(xi) = xi −
3µiy1,i(3y21,i + µiy2,i)

4y41,i − 3µiy
2
1,iy2,i − 3µ

2
i y
2
2,i + µ

2
i y1,iy3,i

(i ∈ Iν). (35)

It is worth mentioning that AG (29) can also be applied for the acceleration of iterative interval methods for the
simultaneous inclusion of polynomial multiple roots in complex interval arithmetic. Since this procedure is essentially
identical to the case of simultaneous methods in ordinary complex arithmetic, we will not discuss interval methods in this
paper.

5. Computational aspects

This section begins with a short discussion about the efficiency of considered methods. Knowledge of computational
efficiency is of particular interest in designing a package of root-solvers. More details about this topic may be found
in [18, Ch. 6]. The efficiency of an iterative method can be successfully estimated using the efficiency index given by

E =
log r
θ
,

where r is the order of convergence of the method under study and θ is the computational ‘‘cost’’ per iteration; see [1] and
[19, Ch. 1].
In the case of iterative methods for solving nonlinear equations of the form f (x) = 0, the computational cost θ is

approximately equal to the number of new function evaluations of f and its derivatives per iteration. Since one-point
methods for finding a single multiple root, considered in Section 3, require r function evaluations to reach the order r ,
their efficiency index is expressed by a simple formula

E(r) =
log r
r
.

Since E ′(r) = (1− log r)/r2, the function E(r) attains its maximum for r = e ≈ 2.718. Therefore, it turns out that cubically
convergent one-point iterative methods possess the highest computational efficiency.
Estimation of the computational efficiency of iterative methods for the simultaneous determination of multiple roots of

polynomials is a more complex task. Beside the evaluation of a polynomial and its derivatives at ν (≤n) points (where ν is
the number of distinct roots and n is the polynomial degree), evaluations of sums and products can appear. This means that
we must count the total numbers of basic arithmetic operations and take into consideration the processor time needed for
the execution of these operations.
An efficient approach that shows a good agreement with real CPU (central processor unit) time deals with certain

operation weights depending on the processor execution time for each of the basic operations; see [20] for details. Let
was, wm and wd denote these weights for addition + subtraction, multiplication and division, respectively. Furthermore,
let ASν, Mν and Dν denote the number of additions + subtractions, multiplications and divisions per one iteration for
all ν roots of a given polynomial. Then the computational cost θ(ν) can be calculated approximately as θ = θ(ν) =
wasASν + wmMν + wdDν . Hence, the efficiency index is given by

Eν =
log r
θ(ν)

=
log r

wasASν + wmMν + wdDν
. (36)

Author's personal copy

M.S. Petković et al. / Computers and Mathematics with Applications 59 (2010) 2784–2793 2791

Fig. 1. Computational efficiency of the simultaneous methods (31)–(33).

Table 1
Errors of approximations.

Methods |x(1) − α| |x(2) − α| |x(3) − α| |x(4) − α|

The Newton method Nf (10) 1.32 1.09 0.90 0.75
The Halley-like method ϕ3(12) 5.77(−2) 2.29(−6) 1.42(−19) 3.44(−59)
The second-order method ψ2(21) 1.93(−1) 3.44(−4) 1.94(−12) 3.49(−37)
The third-order method ψ3(22) 1.12(−1) 3.69(−5) 1.20(−15) 4.11(−47)
The fourth-order method ϕ∗4 (16) 2.28(−2) 8.53(−12) 6.24(−59) 1.30(−294)
Osada’s method (17) 8.34(−2) 6.91(−6) 3.94(−18) 7.26(−55)
Accelerated Osada’s method (18) 3.15(−2) 5.35(−11) 7.51(−55) 4.11(−274)
Ostrowski’s method (19) 5.05(−2) 1.53(−6) 4.27(−20) 9.26(−61)
Accelerated Ostrowski’s method (20) 1.23(−3) 2.94(−19) 2.29(−97) 2.48(−421)

As presented in [20] (see, also, [18, Ch. 6]), the ranking list of methods created according to (36) closely matches the ranking
list made on the basis of real CPU time.
The estimation of the computational efficiency of simultaneous root-methods ismore complicated in the case ofmultiple

roots since, in addition to the polynomial degree n, the number of distinct roots νmust be taken into account as an important
new parameter. Thus, we will simplify our analysis of efficiency and restrict our attention to simultaneous methods for
finding only simple roots, realized in real arithmetic. To demonstrate, we will consider the iterative methods (31)–(33),
generated byAG (29) starting from the Ehrlich–Aberth method (31).
It is commonly accepted that the weights appearing in (36) are proportional to the number of cycles in the execution

of the four basic operations. To compare the simultaneous methods (31)–(33), we used the numbers of cycles (necessary
for the evaluation of weights appearing in (36)) given in [21]. The numbers of basic operations for these three methods are
ASn = rn2 + O(n), Mn = (2r − 4)n2 + O(n), and Dn = n2 + O(n), where r = 3, 4, 5 denotes the order of convergence.
The (scaled) dependence of efficiency of themethods (31)–(33) on the polynomial degree n is graphically displayed in Fig. 1.
We observe that method (31) is the most efficient and that method (32) is more efficient than (33). The same order remains
unchanged for other weights. However, the differences among the efficiency indices are hardly noticeable, especially for
polynomials of a high degree; see Fig. 1. To bemore precise, we calculated relative efficiency indices [(Ei−Ej)/Ej] ·100 (in %)
and found that the Ehrlich–Aberth method (31) is about 10% more efficient than method (32) and about 23% more efficient
than method (33).
We tested the considered methods in examples of functions having multiple roots. To illustrate, we have selected nine

methods to solve two nonlinear equations and three simultaneous methods of the Ehrlich–Aberth type for finding polyno-
mial roots.

Example 1. We considered the function

f (x) = x sin x− 2(sin(x/
√
2))2

which has the root α = 0 of the sixth order (not entirely obvious!). Starting from the initial approximation x0 = 1.6, we
carried out four iterations and obtained the following results given in Table 1. Instead of A× 10−h, a shorter notation A(−h)
is used in Tables 1–3.

Author's personal copy

2792 M.S. Petković et al. / Computers and Mathematics with Applications 59 (2010) 2784–2793

Table 2
Errors of approximations.

Methods |x(1) − α| |x(2) − α| |x(3) − α| |x(4) − α|

The Newton method Nf (10) 0.21 0.13 0.0787 0.0502
The Halley-like method ϕ3(12) 2.86(−3) 2.85(−9) 2.72(−27) 2.36(−81)
The second-order method ψ2(21) 8.52(−2) 6.54(−3) 4.47(−5) 2.11(−9)
The third-order method ψ3(22) 8.25(−3) 5.04(−7) 1.12(−19) 1.25(−57)
The fourth-order method ϕ∗4 (16) 1.61(−2) 1.31(−8) 7.53(−33) 8.26(−130)
Osada’s method (17) 0.196 1.90(−2) 1.63(−5) 1.03(−14)
Accelerated Osada’s method (18) 0.218 2.59(−3) 3.55(−11) 1.23(−42)
Ostrowski’s method (19) 1.96(−2) 3.21(−6) 1.45(−17) 1.35(−51)
Accelerated Ostrowski’s method (20) 9.89(−3) 2.39(−9) 7.70(−36) 8.27(−142)

Table 3
Norms of the errors of approximations.

Methods ε(1) ε(2) ε(3) ε(4)

The Ehrlich–Aberth method (31) 7.06(−2) 7.14(−5) 5.86(−14) 3.25(−41)
The Ehrlich–Aberth-like method (32) 1.88(−2) 6.07(−9) 1.60(−35) 4.08(−145)
The Ehrlich–Aberth-like method (33) 5.21(−3) 3.30(−13) 8.12(−67) 3.91(−347)

Example 2. We applied the same methods as in Example 1 to find improved approximations to the root α = 1 of the
multiplicitym = 3 of the polynomial

f (x) = (x− 1)3(x2 + 2x+ 5)2(x+ 5)(x5 + x+ 1).

We chose x0 = 0.6 as the initial approximation. Results of the four iterations are given in Table 2.
From Tables 1 and 2 we observe that the Newton method (10) converges very slowly, in accordance with the fact that

this method converges linearly in the case of multiple roots. The convergence behavior of the methods ψ2 and ψ3, which
do not require any information on the order of multiplicity, is satisfactory. The convergence rate of methods with known
multiplicitiesmatcheswith the theoretical result verywell. Analyzing the results of Example 2, we note that Osada’smethod
(17) and its modification (18) converge slowly at the beginning of the iterative process. However, these methods reach the
expected convergence orders 3 and 4 in later iterations.

Example 3. We applied the simultaneous methods (31)–(33) of the Ehrlich–Aberth type for finding all multiple roots α =
(α1, . . . , α6) of the polynomial

P(x) = (x+ 3)(x− 2i)3(x2 + 4x+ 5)2(x2 − 4x+ 5)2.

The roots of this polynomial are α1 = −3, α2 = 2i, α3,4 = −2± i, α5,6 = 2± i with multiplicities µ1 = 1, µ2 = 3, µ3 =
µ4 = µ5 = µ6 = 2. The following complex numbers were taken as initial approximations

x(0)1 = −3.3+ 0.2i, x(0)2 = 0.3+ 2.3i, x(0)3 = −2.3+ 1.2i,

x(0)4 = −2.3− 1.2i, x(0)5 = 2.3+ 1.2i, x(0)6 = 2.3− 1.2i.

As a measure of accuracy of the approximations obtained, we calculated Euclid’s norm

ε(m) := ‖x(m) − α‖2 =

(
6∑
i=1

|z(m)i − αi|
2

)1/2 (
x(m) =

(
x(m)1 , . . . , x(m)6

)
;m = 0, 1, . . .

)
.

The errors ε(k) are given in Table 3. All tested methods converge rapidly with the convergence rate which coincides very
well with the theoretical results.

Finally, a few words about iterative methods with a knownmultiplicity. Most of the papers treating such methods begin
with the phrase ‘‘Let α be a root of f with the given multiplicity m, . . . ,’’ with no information how to provide the exact m.
Comparing iterative methods of the same convergence speed that deal (i) with a knownmultiplicity (e.g., (11) and (12)) and
(ii) with no information on multiplicity (such as (21) and (22)), we observe that the latter ones require one more function
evaluation. This is the price to pay to spare one from long calculations. Thus, we avoid the strenuous procedure of finding
the order of multiplicity. Moreover, most algorithms to determine the order of multiplicity may lead to mutually opposite
requirements. We shall illustrate this fact in the following two multiplicity-finding methods.
(I) Traub [1, p. 154] showed that

m ≈
log |f (x)|
log |u(x)|

(37)

when x is very close to a root of f .

Author's personal copy

M.S. Petković et al. / Computers and Mathematics with Applications 59 (2010) 2784–2793 2793

Table 4
Approximate multiplicity.

Approximations x −→ 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Traub’s formula (37) 3.636 3.773 3.913 4.059 4.213 4.381 4.572 4.912
Lagouanelle’s formula (38) 5.728 5.791 5.846 5.893 5.931 5.961 5.983 5.996

(II) Lagouanelle [22] derived the following approximate formula

m ≈
f ′(x)2

f ′(x)2 − f (x)f ′′(x)
, (38)

assuming again that x is very close to a root of f .
Both the methods demand a very close approximation to calculate a multiplicity of high accuracy. On the other hand, to

find a very close approximation to amultiple root, it is necessary to use precisemultiplicity. However, both the requirements
cannot be attained at the same time. Taking into account the opposite demands mentioned and additional calculations to
find multiplicity, in those cases where we have not provided an accurate multiplicity (or we are not convinced that the
calculated multiplicity is a genuine one; see the example below), it is sometimes better to apply a method which does not
explicitly require the order of multiplicity (such as (21) or (22)), in spite of its lower computational efficiency arising from
an additional function evaluation per iteration.
To emphasize the considered dilemma, we present a numerical example concerning the practical calculation of the order

of multiplicity m by Traub’s formula (37) and Lagouanelle’s formula (38). We considered the function f (x) = x sin x −
2(sin(x/

√
2))2 from Example 1 having the root α = 0 of the sixth order. Approximate values of its multiplicity are given

in Table 4 for different approximations x to the root. In practice, the calculated values are rounded to the nearest integer.
However, in the case of Traub’s formula rounding to 4 or 5 would yield incorrect results.
Finally, in addressing the accurate calculation of the order of multiplicity, we note that Johnson and Tucker [23] recently

proposed an efficient quadrature approach to find the number of roots inside a given rectangle and to calculate their
multiplicities. Their method is based on the argument principle and supported by the use of validated integration of contour
integrals.

References

[1] J.F. Traub, Iterative Methods for the Solution of Equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1964.
[2] B. Jovanović, A method for obtaining iterative formulas of higher order, Mat. Vesnik 9 (24) (1972) 365–369.
[3] E. Schröder, Über unendlich viele algorithmen zur Auflösung der Gleichungen, Math. Ann. 2 (1870) 317–365.
[4] M.R. Farmer, G. Loizou, An algorithm for the total, or partial, factorization of a polynomial, Math. Proc. Cambridge Philos. Soc. 82 (1977) 427–437.
[5] M.S. Petković, D. Herceg, On rediscovered iteration methods for solving equations, J. Comput. Appl. Math. 107 (1999) 275–284.
[6] G.W. Stewart, On infinitelymany algorithms for solving equations. Available by the corresponding author, ftp://thales.cs.umd.edu/pub/reports/imase.
ps.

[7] X. Buff, C. Hendriksen, On König’s root-finding algorithms, Nonlinearity 16 (2003) 989–1015.
[8] E.R. Vrscay, W.J. Gilbert, Extraneous fixed points, basin boundaries and chaotic dynamics for Schröder and König rational iteration functions, Numer.
Math. 52 (1998) 1–16.

[9] M.S. Petković, L.D. Petković, Ð. Herceg, On Schröder’s families of root-finding methods, J. Comput. Appl. Math. 233 (2010) 1755–1762.
[10] N. Osada, An optimal multiple root-finding method of order three, J. Comput. Appl. Math. 51 (1994) 131–133.
[11] C. Chun, H.J. Bae, Neta, New families of nonlinear third-order solvers for finding multiple roots, Comput. Math. Appl. 57 (2009) 1574–1582.
[12] C. Chun, B. Neta, A third-order modification of Newton’s method for multiple roots, Appl. Math. Comput. 211 (2009) 474–479.
[13] M. Frontini, E. Sormani, Modified Newton’s method with third order of convergence and multiple roots, J. Comput. Appl. Math. 156 (2003) 345–354.
[14] B. Neta, New third order nonlinear solvers for multiple roots, Appl. Math. Comput. 202 (2008) 162–170.
[15] M.S. Petković, L.D. Petković, Construction of zero-finding methods by Weierstrass functions, Appl. Math. Comput. 184 (2007) 351–359.
[16] O. Aberth, Iteration methods for finding all zeros of a polynomial simultaneously, Math. Comp. 27 (1973) 339–344.
[17] L.W. Ehrlich, A modified Newton method for polynomials, Commun. ACM 10 (1967) 107–108.
[18] M.S. Petković, Iterative Methods for Simultaneous Inclusion of Polynomial Zeros, Springer-Verlag, Berlin, Heidelberg, New York, 1989.
[19] J.M. McNamee, Numerical Methods for Roots of Polynomials, Part I, Elsevier, Amsterdam, 2007.
[20] G.V. Milovanović, M.S. Petković, On computational efficiency of the iterative methods for the simultaneous approximation of polynomial zeros, ACM

Trans. Math. Software 12 (1986) 295–306.
[21] J. Fujimoto, T. Ishikawa, D. Perret-Gallix, High precision numerical computations, Technical report, ACCP-N-1, May 2005.
[22] J.L. Lagouanelle, Sur une métode de calcul de l’ordre de multiplicité des zéros d’un polynôme, C. R. Acad. Sci. Paris Sér. A 262 (1966) 626–627.
[23] T. Johnson, W. Tucker, Enclosing all zeros of an analytic function—A rigorous approach, J. Comput. Appl. Math. 228 (2009) 418–423.

