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a b s t r a c t

A general family of biparametric n-point methods with memory for solving nonlinear
equations is proposed using an original accelerating procedure with two parameters.
This family is based on derivative free classes of n-point methods without memory
of interpolatory type and Steffensen-like method with two free parameters. The
convergence rate of the presented family is considerably increased by self-accelerating
parameters which are calculated in each iteration using information from the current and
previous iteration and Newton’s interpolating polynomials with divided differences. The
improvement of convergence order is achievedwithout any additional function evaluations
so that the proposed family has a high computational efficiency. Numerical examples
are included to confirm theoretical results and demonstrate convergence behavior of the
proposed methods.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The main drawbacks of one-point methods for solving nonlinear equations of the form f (x) = 0, such as Newton’s,
Halley’s and Laguerre’s methods, are their theoretical limits related to the convergence order, computational and
informational efficiency. To overcome these disadvantages, so-called multipoint methods were constructed in the second
half of the twentieth century. One of the fundamental papers from that period, written by Kung and Traub [1], presented
two families of multipoint methods with arbitrary order of convergence of the form 2n, which require exactly n + 1
function evaluations (FE for short). According to the conjecture presented in the same paper [1], proved for some classes of
multipoint methods by Woźniakowski [2], the bound 2n cannot be exceeded without additional information. This bound,
often called optimal order, is concerned with multipoint methods that use only information from the current iteration,
referred to as methods without memory. Further advance in designing multipoint optimal methods have become possible
with significant progress of computer hardware (powerful processors) and software (symbolic computation and multi-
precision arithmetics). Indeed, a classic pencil-and-paper fashionwas not sufficient to design and analyzemethods of higher
order. For this reason, new multipoint methods of high computational efficiency have appeared in very recent years; see,
e.g., [3–17] and [18].

In this paper we use optimal multipoint methods without memory as the base for constructing considerably faster
methods employing information from the current and previous iteration. Following Traub’s classification (see [19, pp. 8–9]),
this class of root-finders are calledmethods withmemory. Surprisingly enough, althoughmethodswithmemory possess very
high computational efficiency, they were considered very seldom in the literature. Neta’s method [20] and recent results
presented in [21–24] offer an advance in this topic.
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Our main goal is to present a general approach to the construction and convergence analysis of n-point methods with
memory. The acceleration of convergence rate is attained by suitable variation of one or two free parameters in each
iterative step. These self-accelerating parameters are calculated using information from the current andprevious iteration by
applyingNewton’s interpolating polynomials. Since considerable acceleration of convergence is obtainedwithout additional
FE, the computational efficiency of improved multipoint methods is significantly increased.

The paper is organized as follows. In Section 2 we present a general family of derivative free n-point methods based on
the Steffensen-like iteration function [25]

φ(x) = x −
f (x)

f [x, x + γ f (x)] + pf (x + γ f (x))

with real parameters γ (≠ 0) and p, where f [x, y] = (f (x) − f (y))/(x − y) denotes a divided difference. The presented
family of Steffensen’s type is of interpolatory type in a wide sense (it can relay on derivative estimate) and has the order of
convergence atmost 2n costing n+1 function evaluations. The presented procedure of derivative estimation can successfully
be applied to any derivative free (n−1)-step optimalmethod to obtain an n-step optimal root-finder. The derived expression
of the asymptotic error constant, depending on the parameters γ and p, gives a clear motivation for the acceleration of
n-point methods. Some estimates necessary for the convergence analysis of the family with memory are presented in
Section 3. In Sections 4 and 5 we study the convergence rate of the proposed family with memory attained by varying
self-accelerating parameters γ and p. An appropriate calculation of γ (with fixed p) in each iterative step provides maximal
order 1.5 · 2n, while a combined variation of both parameters γ and p gives maximal order 1.75 · 2n, which is the order
improvement of 50% and 75%, respectively, relative to the n-point families without memory.

Two families based on themethods investigated in [15,25], rising from the general scheme and their particular cases, are
also presented in Section 6. A discussion of computational efficiency and numerical examples are given in Section 7.

2. Two-parameter n-point methods without and with memory

Let α be a simple real zero of a real function f : D ⊂ R → R and let x0 be an initial approximation to α. Normalized
coefficients of Taylor series of the function f will be denoted with

cj =
f (j)(α)

j!f ′(α)
, j = 2, 3, . . . .

To avoid higher order terms in some relations, which do not influence the convergence order, we employ the O- and
o-notation. If {ϕk} and {ωk} are null sequences and ϕk/ωk → C when k → ∞, where C is a nonzero constant, we shall write

ϕk = O(ωk) or ϕk ∼ Cωk.

If ϕk/ωk → 0 when k → ∞, we write ϕk = o(ωk); in other words, ϕ is dominated by ω asymptotically. This approach
significantly simplifies both the convergence analysis and presentation.

In this paper we consider biparametric multipoint methods in a general form
yk,1 = ϕ1(f )(xk) = xk + γ f (xk),

yk,2 = ϕ2(f )(xk) = xk −
f (xk)

f [xk, yk,1] + pf (yk,1)
,

yk,j = ϕj(f )(xk), j = 3, . . . , n,
xk+1 = yk,n+1 = ϕn+1(f )(xk), k = 0, 1, . . . ,

(1)

where γ ≠ 0 and p are real parameters. The first two steps of the iterative scheme (1) define the two-parameter Steffensen-
like method, investigated in [25]

xk+1 = xk −
f (xk)

f [xk, xk + γ f (xk)] + pf (xk + γ f (xk))
, k = 0, 1, . . . . (2)

The next n − 1 steps yk,j = ϕj(f )(xk), j = 3, . . . , n + 1, use inverse interpolatory iteration functions

yk,j = ϕj(f )(xk) = R(0),

R(f (yk,i)) = yk,i, i = 0, . . . , j − 1, yk,0 = xk


, (3)

or iteration functions of the form

yk,j = ϕj(f )(xk) = yk,j−1 −
f (yk,j−1)

P ′

j (yk,j−1; yk,0, yk,1, . . . , yk,j−1)
, (4)

where Pj(t; yk,0, yk,1, . . . , yk,j−1) is Newton’s interpolating polynomial or a rational interpolating function that use available
FE at the points yk,0, yk,1, . . . , yk,j−1. We restrict our investigation to these two types of interpolatory functions because of
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their low computational cost. Formulas (3) and (4) give explicit definitions of the iterative steps of the iteration scheme (1).
From (3) and (4) it is obvious that yk,j depends not only on yk,j−1 but also on all yk,i for 0 ≤ i ≤ j−1. Note that any other inter-
polating function of the same quality (satisfying the same interpolating conditions) would give equally good results in terms
of convergence of the method (1). For more details on basic interpolatory iteration functions see the book [19, Chapter 4].

Recall that the original Steffensen’s method is given by the iterative formula

xk+1 = xk −
f (xk)2

f (xk + f (xk)) − f (xk)
;

see [26]. It is easy to show (for details see [25]) that the error relations of the Steffensen-like method (2) are given by

εk,1 ∼ (1 + γ f ′(α))εk, εk+1 ∼ (c2 + p)εkεk,1 ∼ (c2 + p)(1 + γ f ′(α))ε2
k , (5)

where εk = xk − α, εk,1 = yk,1 − α. We shall see later that this error relation has a key role in accelerating convergence
order of multipoint methods with memory when we use a suitable calculation of the parameters p and γ to minimize the
factors c2 + p and 1 + γ f ′(α). However, if the parameters γ and p have constant values during the iterative process, then
the order of convergence of the Steffensen-like method (2) is two and the order of the corresponding n-point method (1)
cannot exceed 2n.

The form (1) (with p = 0) of multipoint methods are most commonly used for solving scalar equations. Kung and
Traub were the first to develop general optimal n-point families based on the inverse interpolatory polynomials; see [1].
Interpolatory iteration functions have a common error relation of the form

εk,j := yk,j − α ∼ aj
j−1
i=0

ε
λi
k,i, (6)

where

εk,0 = εk = xk − α, εk,n+1 = εk+1 = εk+1,0 = xk+1 − α

and λi is the number of information on the function f (f , f ′, . . . , f (λi−1)) taken at the point yk,i (see, e.g., [19,27]). Constants
aj depend on the type of the applied interpolation.

In what follows we will assume that the information on f , used in the iterative scheme (1), is f (yk,j) (j = 0, . . . , n), that
is, λj = 1 for any j. Such an information-sample procedure is one of the two proved to give the optimal order of convergence
for methods with the error relation (6); see [1]. Thus (6) for the case λj = 1 comes down to

εk,j := yk,j − α ∼ aj
j−1
i=0

εk,i. (7)

Now we will show that general interpolatory type iterations (4) preserve error relation form (7). The relation (7) holds for
j = 1, 2, based on (5) for a1 = 1 + γ f ′(α) and a2 = c2 + p. Assuming that (7) holds for all 1 ≤ i ≤ j − 1 and j > 2, let
Pj(t) = Pj(t; yk,0, yk,1, . . . , yk,j−1) be a minimal degree interpolating polynomial or a rational function (restriction imposed
because of their low computational complexity), that coincides with f at the points yk,i, i = 0, . . . , j − 1. Due to Cauchy’s
mean value theorem, there exists a point ξt contained in theminimal interval defined by the points yk,0, yk,1, . . . , yk,j−1 such
that

f (t) − Pj(t) =
(f − Pj)(j)(ξt)

j!

j−1
i=0

(t − yk,i) ∼
(f − Pj)(j)(α)

j!

j−1
i=0

(t − yk,i) (8)

holds. After differentiating (8) at the point yk,j, having in mind relations (7) for 1 ≤ i ≤ j − 1, we obtain

P ′

j (yk,j) ∼ f ′(yk,j) −
(f − Pj)(j)(α)

j!

j−2
i=0

(yk,j − yk,i)

= f ′(yk,j) −
(f − Pj)(j)(α)

j!

j−2
i=0

(εk,j − εk,i)

∼ f ′(yk,j)


1 + (−1)j

(f − Pj)(j)(α)

j!f ′(α)

j−2
i=0

εk,i


.

Therefore

P ′

j (yk,j) = f ′(yk,j)


1 + O


j−2
i=0

εk,i


. (9)
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The error estimate is given by

εk,j = εk,j−1 −
f (yk,j−1)

P ′

j (yk,j−1)

= εk,j−1 −
f (yk,j−1)

f ′(yk,j−1)


1 + O


j−2
i=0

εk,i



= εk,j−1 − (εk,j−1 + O(ε2
k,j−1))


1 + O


j−2
i=0

εk,i


.

Hence we obtain

εk,j = O


j−1
i=0

εk,i


and conclude that (7) also holds for all j when general interpolatory type iterations (4) are applied.

Using a standard error-estimate procedure that involves Taylor’s series and (7), we derive the following error relations
for the n-point method (1)

εk,j = yk,j − α ∼ aj
j−1
i=0

εk,i, j = 1, . . . , n + 1, (10)

where

a1 = 1 + γ f ′(α), a2 = c2 + p, (11)

and aj (j ≥ 3) depend on the type of interpolation used at the j-th step. For example,

aj =

(−1)jcj + c2aj−1, for Newton’s interpolating polynomial in (4) [28],

(−1)j+1 F (j)(0)
j!F ′(0)j

, for inverse polynomial interpolatory iteration (3) [1],

where F is the inverse function of f .
Using (10) we prove by induction that the following is valid:

εk,j ∼


aj

j−1
i=1

a2
j−i−1

i


ε2j−1

k,0 .

Taking into account (11), from the last relation we obtain
εk,1 = yk,1 − α ∼ (1 + γ f ′(α))εk,0,

εk,2 = yk,2 − α ∼ (c2 + p)(1 + γ f ′(α))ε2
k,0,

εk,j = yk,j − α ∼ Bj(c2 + p)2
j−3

(1 + γ f ′(α))2
j−2

ε2j−1

k,0 , j = 3, . . . , n + 1,
(12)

where B3 = a3, Bj = aj
j−1

i=3 a
2j−i−1

i (j > 3). Assuming that parameters γ and p in (1) are constants, the family of n-point
methods defined by (1) can be regarded as the method without memory that requires exactly n + 1 function evaluations.
For j = n + 1, we get from the third relation of (12)

εk,n+1 = εk+1 = xk+1 − α ∼ Bn+1(c2 + p)2
n−2

(1 + γ f ′(α))2
n−1

ε2n
k,0

= Bn+1(c2 + p)2
n−2

(1 + γ f ′(α))2
n−1

ε2n
k . (13)

Therefore, the order of the family of n-point methods (1) without memory is 2n, which means that this family is optimal in
the sense of the Kung–Traub conjecture.

In the construction of multipoint methods Hermitian type of information is often used. This type of information means
that if we use the derivative f (m)(y) at a certain point y, then all f (j)(y), 0 ≤ j ≤ m − 1, are used as well. Note that for any
multipoint scheme that consumes n FE of Hermitian type having error relations

εk,j = O

ε2j−1

k


, j = 1, . . . , n,

a new step of the form (3) or (4) can be appended to this scheme to obtain a new iterative scheme of optimal order 2n with
one new FE f (yk,n). Thus, by means of the steps (3) and (4) we can always construct multipoint methods of arbitrary order
of convergence.
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Considering the error relation (13) we observe that a suitable minimization of the factors c2 + p = f ′′(α)/(2f ′(α)) + p
and 1 + γ f ′(α) could provide the order of the method (1) greater than 2n. However, the values f ′(α) and f ′′(α) are not
available in practice. For this reason, we are forced to use only approximationsf ′(α) ≈ f ′(α) andf ′′(α) ≈ f ′′(α), calculated
by available information, endeavoring to attain sufficiently good approximations of the mentioned factors, for example,f ′′(α)

2f ′(α)
+ p = O(εk,0) and 1 + γf ′(α) = O(εk,0).

Then, setting γ = γk = −1/f ′(α) or pk = −f ′′(α)/(2f ′(α)) = −c2, or both γk and pk in (1), we achieve that the order of
convergence of themodifiedmethod exceeds 2n without using any new function evaluations. Since the information from the
current and previous iteration are used, the iterative scheme (1), modified in this way, becomes amethodwithmemory. The
more accurate information is used in this procedure, the greater order of themethodwithmemory is achieved. In this paper
we will use Newton’s interpolating polynomials with best available approximations (nodes) to attain as high as possible
order of convergence.

Remark 1. For simplicity, in the sequel we will use the denotationf ′(α) andf ′′(α) although these quantities depend on the
iteration index k. Contrary, to avoid any confusion and distinguish methods with and without memory, the constants aj will
be denoted with ak,j always when these quantities are calculated in each iteration (methods with memory).

Remark 2. We note that a similar accelerating process was applied in [21] to the Kung–Traub family without derivative [1]
(constructed by inverse interpolation) and the Zheng–Li–Huang family [28] (constructed by Newton’s interpolation), but
only with one parameter γ . Observe that the general iterative scheme (1) contains these families as special cases.

Our model for approximating f ′(α) and c2 uses Newton’s interpolation with divided differences

f ′(α) = N ′

m(yk,0) and c2 =
N ′′

m+1(yk,1)
2N ′

m+1(yk,1)
,

where
Nm(τ ) = Nm(τ ; yk,0, yk−1,n−j1 , . . . , yk−1,n−jm),

Nm+1(τ ) = Nm+1(τ ; yk,1, yk,0, yk−1,n−j1 , . . . , yk−1,n−jm), 0 ≤ j1 < j2 < · · · < jm ≤ n,
are Newton’s interpolating polynomials set through m + 1 and m + 2 available approximations from the current and
previous iteration. Evidently, the fastest accelerationwill be obtainedwhen best available approximations are used as nodes
for Newton’s interpolating polynomials; see the recent results presented in [21–23]. For this reason we will restrict our
consideration to the case

Nm(τ ) = Nm(τ ; yk,0, yk−1,n, . . . , yk−1,n−m+1), (14)

Nm+1(τ ) = Nm+1(τ ; yk,1, yk,0, yk−1,n, . . . , yk−1,n−m+1) (15)
for m ≤ n + 1. Therefore, the formulas for calculating γk and pk are given by

γk = −
1

N ′
m(yk,0)

, m ≥ 1, (16)

pk = −
N ′′

m+1(yk,1)
2N ′

m+1(yk,1)
, m ≥ 1, (17)

where Nm and Nm+1 are defined by (14) and (15), respectively.
Now we replace constant parameters γ and p in the iterative formula (1) by the varying γk and pk defined by (16) and

(17). Then the family of n-point methods with memory, following from (1), becomes
yk,1 = xk + γkf (xk),

yk,2 = xk −
f (xk)

f [xk, yk,1] + pkf (yk,1)
,

yk,j = ϕj(f )(xk), j = 3, . . . , n,
xk+1 = yk,n+1 = ϕn+1(f )(xk), k = 0, 1, . . . .

(18)

According to (10), we can write the following error relations for the family of n-point methods with memory (18)
εk,1 = yk,1 − α ∼ (1 + γkf ′(α))εk,0,
εk,2 = yk,2 − α ∼ (c2 + pk)εk,0εk,1,

εk,j = yk,j − α ∼ ak,j
j−1
i=0

εk,i, j = 3, . . . , n + 1,
(19)

where ak,j = 1 + γkf ′(a), ak,2 = c2 + pk and ak,j (j ≥ 3) depends on the derivatives of f at α, γk and pk, and the type of
interpolation applied in (18).
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3. Estimation of convergence factors

In this section we estimate the convergence factors 1 + γkf ′(α) and c2 + pk that appear in the error relation (19). These
results are necessary to determine the order of convergence of the family of n-point methods (18), which is the subject of
Sections 4 and 5.

Let {xk} be a sequence of approximations to the zero α, generated by an iterativemethod (IM). If this sequence converges
to the zero α of f with order r , we will write

εk+1,0 = εk,n+1 ∼ Dk,n+1ε
r
k,0, (20)

where Dk,n+1 tends to the asymptotic error constant Dn+1 of (IM) when k → ∞. Similar to (20), we have

εk,j ∼ Dk,jε
rj
k,0, 1 ≤ j ≤ n, (21)

for the iterative sequence {yk,j}. Replacing relations (20) and (21) into the third relation of (19) leads to

εk,j ∼ ak,j
j−1
i=0

εk,i ∼ ak,jεk,0
j−1
i=1

Dk,iε
ri
k,0 ∼ Ak,jε

1+r1+···+rj−1
k,0 , 3 ≤ j ≤ n + 1, (22)

where we set Ak,j = ak,j
j−1

i=1 Dk,i.
After equating exponents of the error εk,0 in pairs of relations (20) ∧ (22) for j = n+ 1 and (21) ∧ (22) for 3 ≤ j ≤ n, we

obtain the system of equations
r = 1 + r1 + r2 + · · · + rn,
rj = 1 + r1 + r2 + · · · + rj−1, 3 ≤ j ≤ n, (23)

which results in
r = 2rn = 2n−2r3 = 2n−2(1 + r1 + r2),
rj = 2rj−1 = 2j−3r3 = 2j−3(1 + r1 + r2), 3 ≤ j ≤ n,

(24)

for n ≥ 2. In particular, when n = 2 then r = r3.
Orders r1 and r2 are directly influenced by the varying parameters γk and pk and the rest of convergence analysis will be

focused on determining r1 and r2 that would give the sought order r in the end.
In order to determine orders r1 and r2 we use the first two relations of (19) and the estimates of the factors 1 + γkf ′(α)

and c2 + pk. According to (16) and (17), both of these factors involve Newton’s interpolation. The error relation (8) becomes

f (t) − Ns(t) =
f (s+1)(ζ )

(s + 1)!

s
j=0

(t − tj) (25)

for Newton’s interpolating polynomial of degree s, set through the nodes t0, . . . , ts, where ζ is some point from the interval
defined by the interpolating nodes. The relation (25) is the basis for our error analysis.

Estimation of 1 + γkf ′(α). We estimate the polynomial (14) for 1 ≤ m ≤ n + 1. After differentiating (25) at the point
t = yk,0, where s = m and tj = yk−1,n+1−j, j = 0, . . . ,m, we obtain by Taylor’s expansion about the zero α

N ′

m(yk,0) ∼ f ′(yk,0) + (−1)m+1 f
(m+1)(α)

(m + 1)!

m−1
j=0

εk−1,n−j

∼ f ′(α)


1 + c2εk,0 + (−1)m+1cm+1

m−1
j=0

εk−1,n−j


,

since εk,0 = O
n

j=0 εk−1,j


. Hence

1 + γkf ′(α) = 1 −
f ′(α)

N ′
m(yk,0)

∼ 1 −
f ′(α)

f ′(α)


1 + c2εk,0 + (−1)m+1cm+1

m−1
j=0

εk−1,n−j



∼ (−1)m+1cm+1

m−1
j=0

εk−1,n−j + c2εk,0. (26)

According to (26), (19) and (21), and taking r0 = 1, we estimate

1 + γkf ′(α) ∼ Lmε
rn−m+1+···+rn
k−1,0 , 1 ≤ m ≤ n + 1, (27)
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where Lm = (−1)m+1cm+1
m−1

j=1 Dk−1,n−j for 1 ≤ m ≤ n and

Ln+1 =

(−1)ncn+2 + c2ak−1,n+1

 n
j=1

Dk−1,j.

Estimation of c2 + pk. Consider now the interpolating polynomial (15). Differentiating twice (25) (for s = m + 1) at the
point t = yk,1, we obtain

f ′(yk,1) − N ′

m+1(yk,1) =
f (m+2)(ζk,m+1)

(m + 2)!
(yk,1 − yk,0)

m−1
j=0

(yk,1 − yk−1,n−j)

∼ (−1)m+1 f
(m+2)(α)

(m + 2)!
εk,0

m−1
j=0

εk−1,n−j, (28)

and

f ′′(yk,1) − N ′′

m+1(yk,1) =
2f (m+2)(ζk,m+1)

(m + 2)!


m−1
j=0

(yk,1 − yk−1,n−j) + (yk,1 − yk,0)
m−1
j=0

m−1
i=0,i≠j

(yk,1 − yk−1,n−i)



∼ (−1)m
2f (m+2)(α)

(m + 2)!

m−1
j=0

εk−1,n−j. (29)

Using (28), (29) and Taylor’s series, we derive

N ′′

m+1(yk,1)
2N ′

m+1(yk,1)
∼

1
2

f ′′(yk,1) − (−1)m 2f (m+2)(α)

(m+2)!

m−1
j=0

εk−1,n−j

f ′(yk,1) − (−1)m+1 f (m+2)(α)

(m+2)! εk,0
m−1
j=0

εk−1,n−j

∼
1
2

f ′′(α)


1 +

3c3
c2

εk,1


− (−1)m 2f (m+2)(α)

(m+2)!

m−1
j=0

εk−1,n−j

f ′(α)

1 + 2c2εk,1


− (−1)m+1 f (m+2)(α)

(m+2)! εk,0
m−1
j=0

εk−1,n−j

∼
f ′′(α)

2f ′(α)


1 − (−1)m

cm+2

c2

m−1
j=0

εk−1,n−j


.

Hence, we estimate

c2 + pk =
f ′′(α)

2f ′(α)
−

N ′′

m+1(yk,1)
2N ′

m+1(yk,1)
∼ (−1)m

cm+2

c2

m−1
j=0

εk−1,n−j. (30)

From (10), (21) and (30) it follows

c2 + pk ∼ Kmε
rn−m+1+···+rn
k−1,0 , 1 ≤ m ≤ n + 1, (31)

where

Km = (−1)m
cm+2

c2

m−1
j=0

Dk−1,n−j, 1 ≤ m ≤ n + 1, and Dk−1,0 = 1, r0 = 1.

From (27) and (31) we conclude that the factors 1 + γkf ′(α) and c2 + pk are of the same order of accuracy, that is

1 + γkf ′(α) ∼ Lmε
ρm
k−1,0, (32)

c2 + pk ∼ Kmε
ρm
k−1,0, (33)

where, in view of (23) for n ≥ 2,

ρm = rn−m+1 + · · · + rn =

r − rn−m+1, 1 ≤ m < n,
r − 1, m = n,
r, m = n + 1.

(34)
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4. Order of convergence: variation of γk

First we will analyze the influence of the variable parameter γk to the convergence rate of the family (18) of n-point
methods when pk = p is fixed. Since the term c2 + p is not relevant to the order of convergence of (18), in this case, with
regard to (19), we associate particular relation

r2 = r1 + 1 (35)
with (23) so that the relations (24) become

r = 2n−1(1 + r1) and rj = 2j−2(1 + r1), 2 ≤ j ≤ n, n ≥ 1. (36)
Combining (20) and (21) for j = 1 gives the estimate

εk,1 ∼ Dk,1D
r1
k−1,n+1ε

rr1
k−1,0. (37)

Taking into account (32), (20) and the first relation of (19), we obtain

εk,1 ∼ Lmε
ρm
k−1,0Dk−1,n+1ε

r
k−1,0 ∼ LmDk−1,n+1ε

ρm+r
k−1,0. (38)

Equating exponents of the error εk−1,0 in the relations (37) and (38), with regard to (34), gives

rr1 = r + ρm =

2r − rn−m+1, 1 ≤ m < n,
2r − 1, m = n,
2r, m = n + 1.

According to the last relation and (36), we find

r1 =


2 − 2−m, 1 ≤ m < n,
1
2


1 + 2−n/2

√
9 · 2n − 8


, m = n,

2, m = n + 1.

(39)

In this manner, from (39) and (36) we obtain the order of convergence of the n-point method with memory (18) for n ≥ 1

r = 2n−1(1 + r1) =


3 · 2n−1

− 2n−m−1, 1 ≤ m < n,
3 · 2n−2

+ 2
n
2 −2

9 · 22n − 8, m = n,

2n
+ 2n−1

= 1.5 · 2n, m = n + 1.
(40)

From the third relation of (40) we note that the improvement of convergence order of (18) is even 50% related to the order
of the method without memory (1).

We summarize our results in the following theorem.

Theorem 1. If an initial approximation x0 is sufficiently close to a simple zero α of a function f , then the convergence order of the
family of n-point methods with memory (18) with the varying γk, calculated by (16), is given by (40) for 1 ≤ m ≤ n + 1.

5. Order of convergence: variation of both γk and pk

Relations (19), (23) and (24) will still make the crucial part of our convergence analysis when both parameters γk and pk
in (18) vary as the iteration proceeds. Recall that the factors 1+ γkf ′(α) and c2 + pk are of the same order of accuracy ε

ρm
k−1,0

(see (32), (33)), where ρm is defined by (34). Hence,

εk,1 = O

ε

ρm
k−1,0εk,0


and εk,2 = O


ε

ρm
k−1,0εk,1εk,0


= O


ε2
k,1


, (41)

yielding r2 = 2r1 and r3 = 1 + 3r1. Therefore, Eqs. (24) for n ≥ 2 become

r = 2n−2(1 + 3r1) and rj = 2j−3(1 + 3r1), 3 ≤ j ≤ n. (42)
As in the previous section, equating exponents of the error εk−1,0 in the relations (37) and (38) and having in mind (42),

we obtain

r =


2n

+ 2n−1
+ 2n−2

− 3 · 2n−m−2
= 2n−m−2(7 · 2m

− 3), 1 ≤ m < n,
7 · 2n−3

+ 2
n
2 −3

√
49 · 2n − 48, m = n,

2n
+ 2n−1

+ 2n−2
= 1.75 · 2n, m = n + 1, n ≥ 2.

(43)

We observe from the third relation of (43) that the improvement of convergence order of the family with memory (18) is
even 75% related to the order of the method without memory (1).

Above results can be summarized in the following theorem.

Theorem 2. Let x0 be an initial approximation sufficiently close to a simple zero α of a function f . Then the convergence order
of the family of n-point methods (n ≥ 2) with memory (18) with the varying γk and pk, calculated by (16) and (17), is given
by (43) for 1 ≤ m ≤ n + 1.
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Table 1
Order of convergence of multipoint methods.

n → 2 3 4

m = 1

γk 5 (25%) 10 (25%) 20 (25%)
γk, pk 5.5 (37.5%) 11 (37.5%) 22 (37.5%)

m = 2

γk 5.65 (41.14%) 11 (37.5%) 22 (37.5%)
γk, pk 6.54 (63.5%) 12.5 (56.25%) 25 (56.25%)

m = 3

γk 6 (50%) 11.66 (45.7%) 23 (43.75%)
γk, pk 7 (75%) 13.56 (69.5%) 26.5 (65.625%)

m = 4

γk 12 (50%) 23.66 (47.89%)
γk, pk 14 (75%) 27.56 (72.25%)

Without memory 4 8 16

Table 2
The efficiency indices of multipoint methods with/without memory.

n → 2 3 4

m = 1

γk 1.710 1.778 1.821
γk, pk 1.765 1.821 1.856

m = 2

γk 1.781 1.821 1.856
γk, pk 1.870 1.880 1.904

m = 3

γk 1.817 1.848 1.873
γk, pk 1.913 1.919 1.926

m = 4

γk 1.861 1.883
γk, pk 1.934 1.941

Without memory 1.587 1.682 1.741

Remark 3. We did not consider the case when the parameter γ is constant and p varies as the iteration proceeds. Following
the presented procedure it is not difficult to show that the best improvement of convergence rate does not exceed 25% in
this case, which is considerably smaller than the acceleration attained in Section 4 (varying γk) and Section 5 (varying both
γk and pk). For this reason, we omit the approach which varies only parameter pk.

Remark 4. Note that the order improvement of 100%ofmultipointmethodswithmemory (18) is possible only if all available
information from all the previous iterations are used; see [29]. The two self-accelerating parameters technique obtains
75% of improvement with only one previous iteration storage in memory. Similarly introduced additional self-accelerating
parameters can give even higher acceleration in the convergence speed. If we use m parameters based on the information
from the current and one previous iteration, then the highest obtainable order of convergence would be 2nm

i=0 2
−i, which

is

1 − 1/2m


100% of an improvement. However such a procedure requires higher and higher derivative estimation and

excessive raise in computational cost with not much of an effect (increase in convergence order drops exponentially).

Remark 5. We emphasize that iterative formulas convenient for practical problems are those for n = 1, 2 and 3. Multipoint
methods of very high order generate very accurate approximations to the zeros, not needed in practice. In Table 1 we give a
review of the convergence rate of the considered n-point methods with and without memory, together with the percentage
improvements of convergence order related to the order of the corresponding methods without memory.

6. Examples of derivative free n-point methods

In this section we give some examples of derivative free n-point methods. The same basic formulas hold for the methods
with and without memory; the essential difference is that methods with memory use free parameters γk and pk calculated
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Table 3
Two-point methods with and without memory with h(u, v) = 1 + u + v + (u + v)2 and
g(u) = 1/(1 − u − u2) for f (x) = ex sin(x) + log(x2 + 1), α = 0, x0 = 0.3, γ0 = 0.01, p0 = 0.

Methods |x1 − α| |x2 − α| |x3 − α| |x4 − α| rc (50)

(47) with h(u, v) 1.57(−2) 4.93(−7) 4.41(−25) 2.83(−97) 4.000

γk, m = 1 1.57(−2) 1.11(−8) 2.03(−39) 5.57(−193) 4.996
γk, m = 2 1.57(−2) 7.01(−10) 8.45(−55) 7.10(−309) 5.656
γk, m = 3 1.57(−2) 7.09(−10) 7.43(−54) 9.83(−318) 6.000

K–T, n = 2 1.55(−2) 7.91(−7) 6.11(−24) 2.19(−92) 4.000

γk,m = 1 1.55(−2) 1.67(−8) 2.08(−38) 6.26(−188) 5.000
γk, pk m = 1 1.55(−2) 1.29(−10) 3.94(−58) 6.49(−327) 5.657
γk, m = 2 1.55(−2) 6.04(−10) 6.29(−55) 4.93(−309) 5.649
γk, pk m = 2 1.55(−2) 2.66(−12) 2.47(−80) 2.83(−526) 6.555
γk, m = 3 1.55(−2) 6.13(−10) 3.03(−54) 4.46(−320) 6.000
γk, pk m = 3 1.55(−2) 1.49(−12) 1.57(−82) 2.32(−572) 7.000

(49) with g(u) 1.18(−2) 1.33(−7) 2.34(−27) 2.20(−106) 4.000

γk, m = 1 1.18(−2) 5.25(−9) 6.94(−41) 2.57(−200) 5.001
γk, pk m = 1 1.18(−2) 2.69(−12) 8.97(−67) 4.86(−374) 5.641
γk, m = 2 1.18(−2) 1.08(−10) 8.52(−59) 9.44(−331) 5.653
γk, pk m = 2 1.18(−2) 2.68(−14) 2.41(−90) 1.23(−587) 6.539
γk, m = 3 1.18(−2) 1.11(−10) 1.08(−58) 8.88(−347) 6.000
γk, pk m = 3 1.18(−2) 7.47(−15) 1.33(−99) 6.97(−693) 7.000

Z–L–H, n = 2 1.09(−2) 9.67(−8) 6.55(−28) 1.38(−108) 4.000

γk, m = 1 1.09(−2) 2.01(−9) 5.26(−43) 6.46(−211) 5.000
γk, pk m = 1 1.09(−2) 1.85(−12) 1.42(−67) 1.59(−378) 5.642
γk, m = 2 1.09(−2) 3.24(−11) 3.59(−61) 1.25(−343) 5.654
γk, pk m = 2 1.09(−2) 1.59(−14) 9.25(−92) 7.20(−597) 6.540
γk, m = 3 1.09(−2) 3.34(−11) 3.49(−62) 4.63(−368) 6.000
γk, pk m = 3 1.09(−2) 4.11(−15) 1.99(−101) 1.18(−705) 7.000

in each iteration using (16) and (17). Aside from the Kung–Traub n-point derivative free family [1] and the Zheng–Li–Huang
family [28], two new families with a rich structure will be tested in numerical examples.

Uniparametric family of n-point methods with memory. First of the new n-point families is relied on the following fourth-
order two-point family of methods proposed in [15]

yk = xk −
f (xk)

f [xk, wk]
,

xk+1 = yk − h(uk, vk)
f (yk)

f [xk, wk]
,

(k = 0, 1, . . .), (44)

where uk =
f (yk)
f (xk)

, vk =
f (yk)
f (wk)

, wk = xk + γ f (xk). The weight function h of two variables u and v satisfies the following
conditions:

h(0, 0) = hu(0, 0) = hv(0, 0) = 1, hvv(0, 0) = 2,
|huu(0, 0)| < ∞, |huv(0, 0)| < ∞,

(45)

where subscripts represent appropriate partial derivatives with respect to u and v. It was proved in [15] that the error
relation of the family of two-point methods (44) is given by

εk+1 = xk+1 − α = −c2(1 + γ f ′(α))2

c3 + c22


−4 + huu(0, 0)/2 + huv(0, 0)

+ (huu(0, 0)/2 − 1)γ f ′(α)


ε4
k + O(ε5

k ). (46)

Several simple forms of the weight function h(u, v) are given below

h(u, v) = 1 + u + v, h(u, v) =
1 + u
1 − v

, h(u, v) =
1

1 − u − v
,

h(u, v) = (1 + u)(1 + v), h(u, v) =
1

(1 − u)(1 − v)
.
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Table 4
Two-point methods with and without memory with h(u, v) = 1 + u + v + (u + v)2 and
g(u) = 1/(1−u−u2) for f (x) = x2 − (1− x)25, α = 0.1437, . . . , x0 = 0.25, γ0 = 0.01, p0 = 0.

Methods |x1 − α| |x2 − α| |x3 − α| |x4 − α| rc (50)

(47) with h(u, v) 4.99(−3) 2.21(−7) 3.06(−25) 1.11(−96) 4.000

γk, m = 1 4.99(−3) 2.62(−9) 1.58(−40) 4.82(−196) 4.981
γk, m = 2 4.99(−3) 8.57(−10) 1.85(−48) 1.46(−265) 5.615
γk, m = 3 4.99(−3) 2.37(−11) 5.81(−60) 1.85(−351) 5.997

K–T, n = 2 3.92(−3) 1.00(−7) 4.76(−26) 2.41(−99) 4.000

γk, m = 1 3.92(−3) 9.35(−10) 3.63(−42) 3.09(−204) 5.000
γk, pk m = 1 3.92(−3) 1.16(−10) 2.01(−52) 5.39(−288) 5.641
γk, m = 2 3.92(−3) 2.18(−10) 8.60(−51) 9.33(−279) 5.642
γk, pk m = 2 3.92(−3) 1.66(−11) 8.56(−66) 9.55(−421) 6.538
γk, m = 3 3.92(−3) 2.34(−12) 2.59(−65) 4.69(−383) 6.000
γk, pk m = 3 3.92(−3) 1.26(−13) 3.83(−85) 8.14(−586) 7.000

(49) with g(u) 4.35(−3) 6.11(−8) 1.85(−27) 1.56(−105) 4.000

γk, m = 1 4.35(−3) 1.22(−9) 1.56(−41) 4.52(−201) 5.002
γk, pk m = 1 4.35(−3) 3.29(−10) 3.74(−50) 1.81(−275) 5.641
γk, m = 2 4.35(−3) 2.88(−10) 4.32(−50) 8.63(−275) 5.642
γk, pk m = 2 4.35(−3) 4.30(−11) 1.33(−63) 5.15(−407) 6.540
γk, m = 3 4.35(−3) 7.54(−13) 2.90(−68) 9.24(−401) 6.000
γk, pk m = 3 4.35(−3) 7.65(−14) 9.09(−88) 1.93(−605) 7.003

Z–L–H, n = 2 4.28(−3) 4.86(−8) 7.13(−28) 3.28(−107) 4.000

γk, m = 1 4.28(−3) 4.09(−10) 5.11(−44) 1.70(−213) 4.999
γk, pk m = 1 4.28(−3) 2.83(−10) 1.85(−50) 3.55(−277) 5.642
γk, m = 2 4.28(−3) 9.00(−11) 9.81(−53) 4.46(−289) 5.632
γk, pk m = 2 4.28(−3) 3.82(−11) 7.34(−64) 1.12(−408) 6.541
γk, m = 3 4.28(−3) 3.06(−13) 6.25(−71) 5.93(−417) 5.998
γk, pk m = 3 4.28(−3) 9.53(−14) 3.36(−87) 1.82(−601) 7.001

The new family of optimal n-point derivative free methods without memory, based on the two-point method (44), is
given by the following iterative scheme

yk,1 = xk + γ f (xk),

yk,2 = xk −
f (xk)

f [xk, yk,1]
,

yk,3 = yk,2 − h(uk, vk)
f (yk,2)

f [xk, yk,1]
, uk =

f (yk,2)
f (xk)

, vk =
f (yk,2)
f (yk,1)

,

yk,j = yk,j−1 −
f (yk,j−1)

N ′

j−1(yk,j−1)
, j = 4, . . . , n + 1,

xk+1 = yk,n+1, k = 0, 1, . . . ,

(47)

where

Nj−1(τ ) = Nj−1(τ ; yk,j−1, . . . , yk,1, xk) (48)

is Newton’s interpolating polynomial of degree j − 1 set through the nodes yk,j−1, . . . , yk,1, xk, for j = 4, . . . , n + 1. When
the parameter γ is fixed during the iterative process, the n-point method (47) (without memory) can be regarded as an
extension of the three-point family proposed in [22].

The n-point method (47) does not involve the parameter p so that we can vary the parameter γ only using (16). In this
way the uniparametric family of n-point methods with memory is obtained. Its order of convergence can be increasing up
to 50% relative to the order of the family without memory (47); see Theorem 1.

Biparametric family of n-point methods with memory. Another new n-point iterative scheme uses the two-parameter
Steffensen-like method and has the form

yk,1 = xk + γ f (xk),

yk,2 = xk −
f (xk)

f [xk, yk,1] + pf (yk,1)
,

yk,3 = yk,2 − g(uk)
f (yk,2)

f [yk,2, yk,1] + pf (yk,1)
, uk =

f (yk,2)
f (xk)

,

yk,j = yk,j−1 −
f (yk,j−1)

N ′

j−1(yk,j−1)
, j = 4, . . . , n + 1,

xk+1 = yk,n+1, k = 0, 1, . . . ,

(49)
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Table 5
Three-point methods with and without memory with h(u, v) = 1 + u + v + (u + v)2 and
g(u) = 1/(1−u−u2) for f (x) = ex sin(x)+log(x2+1), α = 0, x0 = 0.3, γ0 = 0.01, p0 = 0.

Methods |x1 − α| |x2 − α| |x3 − α| rc (50)

(47) with h(u, v) 2.59(−5) 1.30(−48) 6.41(−525) 11.000

γk, m = 1 2.59(−5) 3.80(−65) 1.17(−942) 14.666
γk, m = 2 2.59(−5) 2.65(−60) 9.78(−825) 13.901
γk, m = 3 2.59(−5) 2.65(−66) 3.83(−981) 15.000
γk, m = 4 2.59(−5) 2.84(−67) 6.41(−979) 14.714

K–T, n = 3 8.13(−4) 2.16(−22) 5.45(−171) 7.999

γk, m = 1 8.13(−4) 1.73(−28) 1.88(−275) 10.009
γk, pk m = 1 8.13(−4) 1.06(−33) 9.02(−363) 11.011
γk, m = 2 8.13(−4) 5.52(−34) 1.30(−368) 11.092
γk, pk m = 2 8.13(−4) 2.47(−41) 3.37(−524) 12.870
γk, m = 3 8.13(−4) 9.10(−34) 1.83(−389) 11.876
γk, pk m = 3 8.13(−4) 1.28(−41) 9.77(−566) 13.864
γk, m = 4 8.13(−4) 1.38(−33) 8.37(−391) 11.999
γk, pk m = 4 8.13(−4) 3.23(−41) 7.04(−565) 14.001

(49) with g(u) 2.36(−4) 9.92(−28) 9.53(−215) 8.000

γk, m = 1 2.36(−4) 1.21(−33) 1.31(−326) 10.002
γk, pk m = 1 2.36(−4) 1.67(−41) 4.76(−451) 11.024
γk, m = 2 2.36(−4) 6.62(−42) 5.62(−455) 11.000
γk, pk m = 2 2.36(−4) 1.05(−51) 5.22(−652) 12.677
γk, m = 3 2.36(−4) 5.42(−41) 1.14(−472) 11.782
γk, pk m = 3 2.36(−4) 1.27(−52) 1.72(−710) 13.629
γk, m = 4 2.36(−4) 1.95(−40) 2.21(−473) 11.998
γk, pk m = 4 2.36(−4) 1.73(−51) 4.16(−713) 14.037

Z–L–H, n = 3 2.00(−4) 2.67(−28) 2.67(−219) 8.000

γk, m = 1 2.00(−4) 5.29(−35) 7.85(−341) 10.001
γk, pk m = 1 2.00(−4) 2.67(−42) 8.04(−460) 11.024
γk, m = 2 2.00(−4) 1.10(−43) 1.64(−474) 10.974
γk, pk m = 2 2.00(−4) 6.91(−53) 7.40(−667) 12.669
γk, m = 3 2.00(−4) 1.37(−42) 7.69(−491) 11.745
γk, pk m = 3 2.00(−4) 1.43(−49) 8.00(−635) 12.963
γk, m = 3 2.00(−4) 5.74(−42) 2.07(−492) 11.998
γk, pk m = 3 2.00(−4) 1.72(−52) 3.90(−727) 14.036

where Nj−1(τ ) is given in (48). The family (49) without memory reaches the optimal order of convergence 2n when the
two-point family

yk,1 = xk + γ f (xk),

yk,2 = xk −
f (xk)

f [xk, yk,1] + pf (yk,1)
,

xk+1 = yk,2 − g(uk)
f (yk,2)

f [yk,2, yk,1] + pf (yk,1)
, uk =

f (yk,2)
f (xk)

,

(k = 0, 1, . . .)

is of optimal order four. This optimal order is achieved under the conditions

g(0) = 1, g ′(0) = 1, |g ′′(0)| < ∞;

see [25].
By varying parameters γ and p in (49) using (16) and (17) we obtain the family of n-point methods with memory. The

order of this family can be increased up to 75% relative to the family (49) without memory; see Theorem 2. Some examples
of the weight function g of simple form and approximately of the same computational cost are as follows:

g(u) =
1 + η1u

1 + (η1 − 1)u
, g(u) =

1
1 − u + η2u2

, g(u) =


1 +

u
q

q

,

where η1, η2 ∈ R , q ∈ Q . The values q = −2, −1, 1, 2 are more convenient values for q.
Explicit iterative formulas of the Kung–Traub family and the Zheng–Li–Huang family are given in [1,28], respectively,

and also in [21]. For this reason, they will not be displayed here.
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Table 6
Three-point methods with and without memory with h(u, v) = 1 + u + v + (u + v)2 and
g(u) = 1/(1−u−u2) for f (x) = x2 −(1−x)25, α = 0.1437, . . . , x0 = 0.25, γ0 = 0.01, p0 = 0.

Methods |x1 − α| |x2 − α| |x3 − α| rc (50)

(47) with h(u, v) 8.21(−6) 9.38(−36) 2.74(−275) 8.000

γk, m = 1 8.21(−6) 2.67(−41) 5.04(−400) 10.108
γk, m = 2 8.21(−6) 5.52(−45) 4.13(−479) 11.082
γk, m = 3 8.21(−6) 1.99(−46) 8.68(−523) 11.728
γk, m = 4 8.21(−6) 4.14(−48) 4.04(−560) 12.105

K–T, n = 3 2.15(−4) 1.38(−24) 4.25(−186) 7.999

γk, m = 1 2.15(−4) 1.54(−30) 5.66(−290) 9.923
γk, pk m = 1 2.15(−4) 2.32(−33) 5.76(−349) 10.895
γk, m = 2 2.15(−4) 1.60(−33) 2.25(−350) 10.877
γk, pk m = 2 2.15(−4) 8.14(−40) 4.50(−485) 12.570
γk, m = 3 2.15(−4) 2.19(−34) 4.35(−381) 11.560
γk, pk m = 3 2.15(−4) 2.82(−40) 2.57(−522) 13.434
γk, m = 4 2.15(−4) 5.12(−35) 3.41(−400) 11.925
γk, pk m = 4 2.15(−4) 1.74(−40) 8.52(−544) 13.945

(49) with g(u) 9.57(−6) 3.30(−35) 6.66(−271) 8.000

γk, m = 1 9.57(−6) 4.94(−40) 5.12(−386) 10.091
γk, pk m = 1 9.57(−6) 1.39(−43) 6.23(−461) 11.030
γk, m = 2 9.57(−6) 8.83(−44) 1.96(−465) 11.086
γk, pk m = 2 9.57(−6) 2.69(−49) 2.82(−602) 12.697
γk, m = 3 9.57(−6) 2.87(−45) 1.23(−509) 11.749
γk, pk m = 3 9.57(−6) 1.23(−51) 9.84(−675) 13.578
γk, m = 4 9.57(−6) 4.60(−47) 3.73(−547) 12.103
γk, pk m = 4 9.57(−6) 2.69(−54) 2.56(−738) 14.089

Z–L–H, n = 3 1.12(−5) 1.10(−34) 9.57(−267) 8.000

γk, m = 1 1.12(−5) 1.68(−40) 4.96(−392) 10.095
γk, pk m = 1 1.12(−5) 5.51(−43) 1.41(−454) 11.033
γk, m = 2 1.12(−5) 3.20(−44) 1.16(−470) 11.064
γk, pk m = 2 1.12(−5) 8.24(−49) 3.37(−596) 12.691
γk, m = 3 1.12(−5) 1.01(−45) 9.41(−515) 11.713
γk, pk m = 3 1.12(−5) 9.90(−50) 1.41(−620) 12.958
γk, m = 4 1.12(−5) 1.53(−47) 1.15(−555) 12.138
γk, pk m = 4 1.12(−5) 8.18(−54) 1.49(−731) 14.080

7. Computational aspects

In this section we first consider computational efficiency of multipoint methods with memory obtained by the proposed
acceleration techniques. Several values of the efficiency index

E(IM) = r1/θ ,

where r is the order of the considered iterative method (IM) and θ is the number of new function evaluations per iterations
(see [19, p. 263]), are given in Table 2.

From Table 2 we conclude that the use of the self-accelerating parameter γk considerably increases computational
efficiency of multipoint methods. An additional increase is attained if both parameters γk and pk are calculated in each
iteration.We note that two-pointmethodswithmemory, which are of the greatest practical interest, are evenmore efficient
than the three-point optimal methods without memory. We again emphasize that great informational and computational
efficiency is the main advantage of the proposed methods with memory.

We have tested particular methods of the newly proposed families (47) and (49), and members of the Kung–Traub
family [1] and the Zheng–Li–Huang family [28] with andwithout memory for n = 2 and n = 3. Good initial approximations
were calculated using an efficient non-iterative method based on numerical integration, given in [30]. We employed the
computational software packageMathematicawith multiple-precision arithmetic.

All numerical examples have shown exceptional convergence speed of the testedmethods. The errors |xk−α| are given in
Tables 3 and 4 for the first four iterations (two-pointmethods) and in Tables 5 and 6 for the first three iterations (three-point
methods), where the denotation A(−h) means A × 10−h. K–T and Z–L–H are the abbreviations for the Kung–Traub method
and the Zheng–Li–Huang method, respectively. These tables include the values of the computational order of convergence
rc calculated by the formula (see [24, p. 5])

rc =
log |f (xk)/f (xk−1)|

log |f (xk−1)/f (xk−2)|
, (50)
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taking into consideration the last three approximations in the iterative process. Although this formula for rc is derived for
methods without memory, it gives mainly a good estimate of convergence order for methods with memory.

From Tables 3–6 and many tested examples we can conclude that the proposed methods with memory produce
approximations of great accuracy. Usually two iterations are quite sufficient for solving most real-life problems even in
the case when two-point methods are applied. Results of the third and fourth iteration are given to demonstrate very
fast convergence of the presented methods. The more accurate information are used in the accelerating procedure (that
is, greater m), the greater order of the designed method with memory is achieved. Entries in the last column of Tables 3–6
show that the computational order of convergence rc , calculated by (50), matches very well the theoretical order given in
Theorems 1 and 2.

Remark 6. The computational order of convergence rc perfectly coincides with the theoretical order only when initial
approximations are reasonably close to the sought zeros; otherwise, the convergence at the beginning of the iterative
process can be slow. For this reason, the choice of good initial approximations is of great importance in the application
of iterative methods, including multipoint methods. Most authors do not discuss this important subject. We note that an
efficient method for finding initial approximations of great accuracy was recently proposed in [30,31]. A combination of this
localization method and fast iterative multipoint methods is the only way to achieve satisfactory results in practice.

We conclude this paper with the comment that the considerable increase of the order of convergence up to 50% (using
a suitable variation of the parameter γk) and even up to 75% (using the self-acceleration of two parameters γk and pk) is
attained without any additional function evaluations per iteration. This means that the proposed methods with memory
possess a very high computational efficiency, not recorded at present in theory and practice of iterative processes for solving
nonlinear equations.
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