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a b s t r a c t

The improved versions of the Kung–Traub family and the Zheng–Li–Huang family of
n-point derivative free methods for solving nonlinear equations are proposed. The
convergence speed of the modified families is considerably accelerated by employing a
self-correcting parameter. This parameter is calculated in each iteration using information
from the current and previous iteration so that the proposed families can be regarded as the
familieswithmemory. The increase of convergence order is attainedwithout any additional
function evaluationsmeaning that these familieswithmemory possess high computational
efficiency. Numerical examples are included to confirm theoretical results anddemonstrate
convergence behaviour of the proposed methods.
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1. Introduction

Multipoint iterativemethods belong to the class of themost efficientmethods for solving nonlinear equations of the form
f (x) = 0. This class of methods was extensively studied in Traub’s book [1] and some papers and books published in the
second half of the twentieth century. The interest for multipoint methods has arisen in recent years mainly for two reasons:
(1) root-solvers based on multipoint methods are of current interest since they overcome theoretical limits of one-point
methods related to the convergence order and computational efficiency, and (2) implementation and convergence analysis
of multipoint methods with the capability to generate root approximations of very high accuracy have become possible
with significant progress of computer hardware (powerful processors) and software (multi-precision arithmetics, symbolic
computation).

The highest possible computational efficiency of multipoint methods is closely connected to the optimality hypothesis
of Kung and Traub [2] from 1974: The order of convergence of any multipoint method without memory, based on n+ 1 function
evaluations per iteration, cannot exceed the bound 2n.

In this paper, we concentrate on the construction of multipoint methods with memory, a task which is seldom
considered in the literature. We prove that methods with memory can achieve considerably faster convergence than
the corresponding methods without memory, without additional function evaluations. In this manner the computational
efficiency is significantly increased. The acceleration of convergence speed is attained by suitable variation of a free
parameter in each iterative step. This self-correcting parameter is calculated using information from the current and
the previous iteration by applying the secant-type method with ‘‘gliding’’ approximations and Newton’s interpolating
polynomials of second and third degree.

We restrict our attention to the Kung–Traub n-point family [2] and the Zheng–Li–Huang n-point family [3] for the
following reasons:

(1) both families are optimal in the sense of the Kung–Traub conjecture;
(2) the order of convergence can be arbitrary high (in the form 2n);

∗ Corresponding author.
E-mail addresses:msp@eunet.rs, msp@junis.ni.ac.rs (M.S. Petković).

0377-0427/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2012.01.035



Author's personal copy

2910 J. Džunić, M.S. Petković / Journal of Computational and Applied Mathematics 236 (2012) 2909–2920

(3) both families are adaptive since they allow the acceleration of convergence without altering their structure;
(4) these families are derivative free, which is convenient in all situations when the calculation of derivatives of f is

complicated.

The paper is organized as follows. The Kung–Traub family [2] and the Zheng–Li–Huang family [3] of multipoint methods
without memory are presented in Section 2. The key idea for the convergence acceleration, arising from the form of the
expression for the asymptotic error relation, is discussed in Section 3. The families of multipoint methods with memory,
based on the Kung–Traub’s and Zheng–Li–Huang’s n-point families, are derived through a self-correcting parameter which
is calculated in each iteration using already known information from the previous and the current iteration. A similar idea
was applied to the families of two-point and three-point methods in [4,5]. In Section 4, we determine the lower bound
of the R-order of convergence of the proposed families with memory. A classical secant approach, exposed in Traub’s
book [1, p. 185–187] and extended in [6], provides the order 2n−1


1 +

√
1 + 21−n


. An improved secant approach gives

higher order 2n
+2j−1 (j ∈ {1, . . . , n−1}). The application of Newton’s interpolating polynomial of second degree provides

even better results: the R-order is at least 11 · 2n−3 for n ≥ 3, and at least 1
2 (5 +

√
33) ≈ 5.372 for n = 2. Even faster

convergence is achieved by applying Newton’s interpolating polynomial of third degree: the R-order is at least 23 · 2n−4 for
n ≥ 4, at least 1

2 (11 +
√
137) ≈ 11.352 for n = 3, and at least 6 for n = 2. Numerical examples are given in Section 5.

2. Two families of arbitrary order without memory

Let α be a simple zero of a real function f : D ⊂ R → R and let x0 be an initial approximation to α. In this section,
we present two derivative free families of n-point methods without memory for solving nonlinear equations. Both families
have similar structure, the order 2n and require n + 1 function evaluations per iteration, which means that they generate
optimal methods in the sense of the Kung–Traub conjecture [2]. These families will be modified by our specific approach to
very efficient generalized methods with memory.

Throughout this paper we often use normalized Taylor series coefficients for f ,

cr =
f (r)(α)
r!f ′(α)

(r = 2, 3, . . .).

To avoid higher order terms in some relations,which arewithout influence to the convergence order,we employ the notation
used in Traub’s book [1]: if {ϕk} and {ωk} are null sequences and ϕk/ωk → C , where C is a nonzero constant, we shall write

ϕk = O(ωk) or ϕk ∼ Cωk.

This approach significantly simplifies both analysis and presentation.
Kung–Traub’s family.
In 1974 Kung and Traub [2] stated the following derivative free family (shorter K–T family) of iterative methods without

memory.
K–T family: for an initial approximation x0, arbitrary n ∈ N and k = 0, 1, . . . , define an iterative function ψj(f ) (j =

−1, 0, . . . , n) as follows:
yk,0 = ψ0(f )(xk) = xk, yk,−1 = ψ−1(f )(xk) = xk + γ f (xk), γ ∈ R \ {0},
yk,j = ψj(f )(xk) = Rj(0), j = 1, . . . , n, for n > 0, (1)

where Rj(t) is the inverse interpolating polynomial of degree at most j such that

Rj(f (yk,m)) = yk,m, m = −1, 0, . . . , j − 1.

The Kung–Traub iterative method is defined by xk+1 = yk,n = ψn(f )(xk) starting from x0, where k is the iteration index.
It was proved in [2] that the order of convergence of family (1) is 2n (n ≥ 1).

The approximation yk,j (j < n) at the j-th step within the k-th iteration will be called intermediate approximation with
the associated intermediate error εk,j = yk,j − α. Following this terminology, yk,n−1 is the penultimate approximation and
yk,n (=xk+1) is the ultimate approximation of the k-th iteration.

The following error relation for family (1), also called the ultimate error relation, was derived in [2]

εk+1 = xk+1 − α ∼ (1 + γ f ′(α))2
n−1

Bn(f )ε2
n

k , (2)

where

Bn(f ) = Υn(f )
n−1
j=1

Υj(f )2
n−1−j

, Υj(f ) =
(−1)j+1F (j+1)(0)
(j + 1)!(F ′(0))j+1

, (3)

and F is the inverse function of f . It is obvious from (1) and (2) that the intermediate error relation, similar to (2),

εk,j = yk,j − α ∼ (1 + γ f ′(α))2
j−1

Bj(f )ε2
j

k (4)

holds for each 1 ≤ j ≤ n − 1. The case j = n is also included in (4) having in mind that εk+1 = εk,n.
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Zheng–Li–Huang’s family.
In the recent paper [3] Zheng, Li and Huang proposed another derivative free family (shorter Z–L–H family) of n-point

methods of arbitrary order of convergence 2n (n ≥ 1). This family is constructed using Newton’s interpolation with forward
divided differences.

Z–L–H family: for an initial approximation x0, arbitrary n ∈ N and k = 0, 1, . . . , the n-point methods are defined by

yk,0 = xk, yk,−1 = yk,0 + γ f (yk,0), γ ∈ R \ {0},

yk,1 = yk,0 −
f (yk,0)

f [yk,0, yk,−1]
,

yk,2 = yk,1 −
f (yk,1)

f [yk,1, yk,0] + f [yk,1, yk,0, yk,−1](yk,1 − yk,0)
,

...

yk,n = yk,n−1 −
f (yk,n−1)

f [yk,n−1, yk,n−2] +

n−1
j=1

f [yk,n−1, . . . , yk,n−2−j]
j

i=1
(yk,n−1 − yk,n−1−i)

.

(5)

The entries yk,1, . . . , yk,n−1 are intermediate approximations of Z–L–H family, while xk+1 = yk,n is the ultimate
approximation. f [x, y] = (f (x)− f (y))/(x− y) denotes a divided difference. Divided differences of higher order are defined
recursively by

f [x0, x1, . . . , xi] =
f [x1, . . . , xi] − f [x0, . . . , xi−1]

xi − x0
(i > 1).

The following theorem was proved in [3].

Theorem 1. Let a function f : D ⊂ R → R be sufficiently differentiable having a simple zero α in an open interval If ⊂ D. If x0
is close enough to α, then the n-point family (5) converges with at least 2n-th order and satisfies the error relation

εk+1 = xk+1 − α = yk,n − α ∼ Dnε
2n
k (k = 0, 1, . . .), (6)

where

D−1 = 1 + γ f ′(α), D0 = 1, D1 = (1 + γ f ′(α))c2, (7)

Dm = Dm−1


c2Dm−1 + (−1)m−1cm+1Dm−2 · · ·D−1


(m = 2, . . . , n). (8)

As in the case of Kung–Traub’s family (1), the intermediate error relations are given with

εk,j = yk,j − α ∼ Djε
2j
k (j = 1, . . . , n), (9)

where constants Dj are calculated recursively by (7) and (8). The ultimate error relation is included in (9) for j = n.
We wish to show that constants Dm in the error relations (9) are of the form

Dm = (1 + γ f ′(α))2
m−1

dm (m = 1, . . . , n), (10)

where

d−1 = D−1 = 1, d0 = D0 = 1, d1 = c2, (11)

dm = dm−1


c2dm−1 + (−1)m−1cm+1dm−2 · · · d−1


(m = 2, . . . , n). (12)

Form = 1, assertion (10) is obvious. Let us assume that (10) and (12) are true for allm < n. According to (8) we find

Dn = Dn−1


c2Dn−1 + (−1)n−1cn+1Dn−2 · · ·D−1


= (1 + γ f ′(α))2

n−2
dn−1


c2(1 + γ f ′(α))2

n−2
dn−1

+ (−1)n−1cn+1(1 + γ f ′(α))2
n−3

dn−2 · · · (1 + γ f ′(α))d1d0(1 + γ f ′(α))d−1


= (1 + γ f ′(α))2

n−2
dn−1


c2(1 + γ f ′(α))2

n−2
dn−1 + (−1)n−1cn+1(1 + γ f ′(α))2

n−3
+2n−2

+···+1+1dn−2 · · · d−1


= (1 + γ f ′(α))2

n−2
dn−1


c2(1 + γ f ′(α))2

n−2
dn−1 + (−1)n−1cn+1(1 + γ f ′(α))2

n−2
dn−2 · · · d−1


= (1 + γ f ′(α))2

n−1
dn−1


c2dn−1 + (−1)n−1cn+1dn−2 · · · d−1


.
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Hence, by induction, we conclude that the intermediate error relations can be written in the following form

εk,j ∼ dj(1 + γ f ′(α))2
j−1
ε2

j

k (j = 1, . . . , n), (13)

where dj is defined by (11) and (12). Note that (13) includes the ultimate error relation for j = n, that is,

εk+1 = εk,n = yk,n − α ∼ dn(1 + γ f ′(α))2
n−1
ε2

n

k . (14)

Remark 1. Both families (1) and (5) of n-point methods have the same order of convergence 2n and require n + 1 function
evaluations, which means that they support the Kung–Traub conjecture on the upper bound of the order of convergence
in the class of methods without memory. These families are both derivative free, and have similar structure and the error
relations of the same type, providing us to carry out the convergence analysis of both families simultaneously.

3. Derivative free families with memory

In this section, we show that the Kung–Traub family (1) and the Zheng–Li–Huang family (5) can be considerably
acceleratedwithout any additional function evaluations. The construction of new families of n-point derivative freemethods
is based on the variation of a free parameter γ in each iterative step. This parameter is calculated using information from
the current and the previous iteration so that the presented methods may be regarded as the methods with memory.

As pointed out in [6], the factor 1+γ f ′(α) in the error relations (2) and (4) (for the K–T family), and (13) and (14) (for the
Z–L–H family) plays the key role in derivation of the families withmemory. The error relations (4) and (13) can be presented
in the unique form

εk,j ∼ ak,j(1 + γ f ′(α))2
j−1
ε2

j

k (j = 1, . . . , n), (15)

where εk = yk,0 − α and εk,j = yk,j − α(j = 1, . . . , n), k being the iteration index. Constants ak,j depend on the considered
family and they can be determined recursively from (4) and (12). However, in this paper we concentrate on the lower bound
of the R-order of the methods with memory so that the specific expressions of dm and asymptotic error constants are out of
our interest. The use of the unique relation (15) enables us to consider simultaneously both families with memory based on
(1) and (5).

We observe from (2) and (14) that the order of convergence of families (1) and (5) is 2n when γ ≠ −1/f ′(α). Obviously, if
we could provide γ = −1/f ′(α), the order of families (1) and (5) would exceed 2n; more precisely, it is not difficult to show
that the order of these families would be 2n

+ 2n−1. However, the value f ′(α) is not available in practice and we could use
only an approximationf ′(α) ≈ f ′(α), calculated by using available information. Then, setting γk = −1/f ′(α), we achieve
that the order of convergence of the modified methods exceeds 2n without using any new function evaluations.

The beneficial approach in approximating γ ≈ −1/f ′(α) is to use only available information, in other words, we wish
to increase the convergence speed without additional function evaluations. We present three models for approximating
−1/f ′(α):

(I) f ′(α) =
f (yk,0)−f (yk−1,j)

yk,0−yk−1,j
(secant approach);

(II) f ′(α) = N ′

2(yk,0) (Newton’s interpolatory approach), where

N2(t) = N2(t; yk,0, yk−1,n−1, yk−1,n−2)

is Newton’s interpolating polynomial of second degree, set through three best available approximations (nodes)
yk,0, yk−1,n−1, yk−1,n−2;

(III) f ′(α) = N ′

3(xk) (improved Newton’s interpolatory approach), where

N3(t) = N3(t; yk,0, yk−1,n−1, yk−1,n−2, yk−1,n−3)

is Newton’s interpolating polynomial of third degree, set through four best available approximations (nodes)
yk,0, yk−1,n−1, yk−1,n−2, yk−1,n−3.

Using divided differences, we find

N ′

2(yk,0) = f [yk,0, yk−1,n−1] + f [yk,0, yk−1,n−1, yk−1,n−2](yk,0 − yk−1,n−1) (16)

and

N ′

3(yk,0) = f [yk,0, yk−1,n−1] + f [yk,0, yk−1,n−1, yk−1,n−2](yk,0 − yk−1,n−1)

+ f [yk,0, yk−1,n−1, yk−1,n−2, yk−1,n−3](yk,0 − yk−1,n−1)(yk,0 − yk−1,n−2). (17)

Note that the Zheng–Li–Huang family (5) is very suitable for the application of Newton’s interpolatory approaches (II)
and (III) since divided differences are already calculated in the implementation of the iterative scheme (5).
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Regarding the above methods (I), (II) and (III), we present the following three formulae for calculating the varying
parameter γk:

γk = −
yk,0 − yk−1,j

f (yk,0)− f (yk−1,j)
, (method (I)), (18)

γk = −
1

N ′

2(yk,0)
(method (II)), (19)

γk = −
1

N ′

3(yk,0)
(method (III)). (20)

Replacing the fixed parameter γ in the iterative formulae (1) and (5) by the varying parameter γk calculated by (18), (19)
or (20), we state the following families of multipoint methods with memory.

K–T family with memory: for an initial approximation x0, arbitrary n ∈ N and γk calculated by (18), (19) or (20) and
k = 0, 1, . . . , define iterative function ψj(f ) (j = −1, 0, . . . , n) as follows:yk,0 = ψ0(f )(xk) = xk, yk,−1 = ψ−1(f )(xk) = xk + γkf (xk),

yk,j = ψj(f )(x) = Rj(0), j = 1, . . . , n, for n > 0,
xk+1 = yk,n = ψn(f )(xk).

(21)

Z–L–H family with memory: for an initial approximation x0, arbitrary n ∈ N , γk calculated by (18), (19) or (20) and
k = 0, 1, . . . , the n-point methods are defined by

yk,0 = xk, yk,−1 = yk,0 + γkf (yk,0),

yk,1 = yk,0 −
f (yk,0)

f [yk,0, yk,−1]
,

yk,2 = yk,1 −
f (yk,1)

f [yk,1, yk,0] + f [yk,1, yk,0, yk,−1](yk,1 − yk,0)
,

...

yk,n = yk,n−1 −
f (yk,n−1)

f [yk,n−1, yk,n−2] +

n−1
j=1

f [yk,n−1, . . . , yk,n−2−j]
j

i=1
(yk,n−1 − yk,n−1−i)

.

(22)

We use the term method with memory following Traub’s classification [1, p. 8] and the fact that the evaluation of γk
depends on the data available from the current and the previous iterative step.

4. R-order of convergence of the families with memory

To estimate the convergence rate of families (21) and (22), we use the concept of the R-order of convergence introduced
in [7]. We distinguish three approaches for the calculation of the varying parameter γk given by formulae (18) (method (I)),
(19) (method (II)) and (20) (method (III)).

Method (I)—secant approach.
Applying the secant approach (18), we have to estimate the factor 1 + γkf ′(α) in (15). For this purpose we use Taylor’s

expansion of f about its simple zero α (thus f ′(α) ≠ 0),

f (x) = f ′(α)

ε + c2ε2 + c3ε3 + · · ·


, ε = x − α. (23)

Using (23) for x = yk,0 and x = yk−1,j, there follows from (18)

γk = −
yk,0 − yk−1,j

f (yk,0)− f (yk−1,j)

= −
εk − εk−1,j

f ′(α)(εk − εk−1,j + c2(ε2k − ε2k−1,j)+ O(ε3k − ε3k−1,j))

= −
1

f ′(α)
(1 − c2(εk−1,j + εk)+ O(ε2k−1,j)).

Hence,

1 + γkf ′(α) = c2(εk−1,j + εk)+ O(ε2k−1,j) ∼ c2εk−1,j. (24)
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Suppose that the R-order of convergence of the improved families with error relation (15) is rj; then we may write

εk+1 ∼ Ak,rjε
rj
k , (25)

where Ak,rj tends to the asymptotic error constant Arj when k → ∞. Hence

εk+1 ∼ Ak,rj


Ak−1,rjε

rj
k−1

rj
= Ak,rjA

rj
k−1,rj

ε
r2j
k−1. (26)

In a similar fashion, if we suppose that {yk,j} is an iterative sequence of the R-order pj for fixed 0 < j < n, then

εk,j = yk,j − α ∼ Ak,pjε
pj
k ∼ Ak,pj


Ak−1,rjε

rj
k−1

pj
= Ak,pjA

pj
k−1,rj

ε
rjpj
k−1. (27)

Combining (15), (24), (26) and (27), we arrive at

εk,j ∼ ak,j

1 + γkf ′(α)

2j−1
ε2

j

k

∼ ak,j

c2εk−1,j

2j−1
Ak−1,rjε

rj
k−1

2j
∼ ak,jc2

j−1

2


Ak−1,pjε

pj
k−1

2j−1

A2j
k−1,rj


εk−1

rj2j
= ak,jc2

j−1

2 A2j−1

k−1,pjA
2j
k−1,rj


εk−1

pj2j−1
+rj2j

(28)

and, in a similar way,

εk+1 ∼ ak,n

1 + γkf ′(α)

2n−1
ε2

n

k

∼ ak,n

c2εk−1,j

2n−1
Ak−1,rjε

rj
k−1

2n
∼ ak,nc2

n−1

2 A2n−1

k−1,pjA
2n
k−1,rj


εk−1

pj2n−1
+rj2n

. (29)

Equating exponents of εk−1 in (27) and (28), and then in (26) and (29), for 0 < j < n we form the system of equations with
unknown orders pj and rj

rjpj − pj2j−1
− rj2j

= 0,
r2j − pj2n−1

− rj2n
= 0. (30)

Positive solutions of this system are pj = 2j
+ 22j−n−1 and rj = 2n

+ 2j−1. Hence, applying method (I), the R-order of the
families (21) and (22) is at least 2n

+ 2j−1.
In particular, let us consider successive approximations xk−1 and xk in the secant method (18), that is,

γk = −
xk − xk−1

f (xk)− f (xk−1)
. (31)

Such an accelerating method was first considered in Traub’s book [1] and recently in [6]. Obviously, this approach gives the
worst approximation to f ′(α) and corresponds to the values j = 0 and p0 = 1. In this case it is sufficient to consider only
the second equation of (30), which reduces to the quadratic equation

r2 − 2nr − 2n−1
= 0.

The positive solution

r = 2n−1

1 +


1 + 21−n


gives the lower bound of the R-order of the families.

We summarize our results in the following theorem.

Theorem 2. Let the varying parameter γk in the iterative formulae (21) and (22) be calculated by (18) for j = 1, . . . , n − 1
and (31) for j = 0. If an initial approximation x0 is sufficiently close to a simple zero α of f , then the R-order of convergence of the
families (21) and (22) of n-point methods with memory is at least 2n

+ 2j−1 for j = 1, . . . , n − 1, and 2n−1

1 +

√
1 + 21−n


for j = 0.
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Table 1
The lower bounds of the R-order.

n Method (I) Method (II) Method (III) No memory
j = 0 j = 1 j = 2 j = 3

2 4.449 (11.2%) 5 (25%) 5.372 (34%) 6 (50%) 4
3 8.472 (6%) 9 (12.5%) 10 (25%) 11 (37.5%) 11.35 (41.9%) 8
4 16.485 (3%) 17 (6.25%) 18 (12.5%) 20 (25%) 22 (37.5%) 23 (43.7%) 16

Note that the use of the better intermediate approximation yk−1,j in the secant method (I) will give the better
approximation to f ′(α) and, consequently, higher order of the modified methods (21) and (22), based on (1) and (5) and
dealing with the varying parameter γk. Some particular values of the R-order are given in Table 1.

Remark 2. The secant method (I) is, in fact, the derivative N ′

1(yk,0) of Newton’s interpolating polynomial of first order at the
nodes yk,0 and yk−1,j so that relation (24) can be derived using Lemma 1 given below.

Now we estimate the R-order of convergence of families (21) and (22) with memory when Newton’s interpolatory
approaches (II) and (III) are applied. In our analysis we use the Bachman–Landau o-notation: for the sequences {ak} and {bk}
which tend to 0when k → ∞wewrite ak = o(bk) if limk→∞ ak/bk = 0; in other words, a is dominated by b asymptotically.
First we state the following assertion.

Lemma 1. Let Nm be the Newton interpolating polynomial of the degree m that interpolates a function f at m + 1 distinct
interpolation nodes yk,0, yk−1,n−1, . . . , yk−1,n−m contained in an interval I and the derivative f (m+1) is continuous in I. Define the
errors εk−1,n−j = yk−1,n−j − α (i ∈ {1, . . . ,m}) and assume that
(1) all nodes yk,0, yk−1,n−1, . . . , yk−1,n−m are sufficiently close to the zero α;
(2) the condition εk,0 = o


εk−1,n−1 · · · εk−1,n−m


holds.

Then

N ′

m(yk,0) ∼ f ′(α)


1 + (−1)m+1cm+1

m
j=1

εk−1,n−j


. (32)

Proof. Taylor’s series of derivatives of f at the points yk,0 ∈ I and d ∈ I about the zero α of f give

f ′(yk,0) = f ′(α)

1 + 2c2εk,0 + 3c3ε2k,0 + · · ·


, (33)

f (m+1)(d) = f ′(α)

(m + 1)!cm+1 +

(m + 2)!
1!

cm+2εd + · · ·


, (34)

where εd = d − α and d is the point that appears in the formula for the error of the Newton interpolation

f (t)− Nm(t) =
f (m+1)(d)
(m + 1)!

(t − yk,0)
m
j=1


t − yk−1,n−j


(d ∈ I). (35)

After differentiating (35) we obtain at the point t = yk,0

N ′

m(yk,0) = f ′(yk,0)−
f (m+1)(d)
(m + 1)!

m
j=1

(yk,0 − yk−1,n−j). (36)

Substituting (33) and (34) into (36) and bearing in mind the conditions of Lemma 1, after some elementary calculations we
come to relation (32). �

Method (II)—Newton’s interpolation of second degree.
First, let us consider the case n ≥ 3 and assume that the R-orders of the iterative sequences {yk,n−2}, {yk,n−1} and {yk}

are at least p, q and r , respectively, that is,

εk,n−2 ∼ Ak,pε
p
k , εk,n−1 ∼ Ak,qε

q
k, εk+1 ∼ Ak,rε

r
k.

Hence

εk,n−2 ∼ Ak,p


Ak−1,rε

r
k−1

p
= Ak,pA

p
k−1,rε

rp
k−1, (37)

εk,n−1 ∼ Ak,q


Ak−1,rε

r
k−1

q
= Ak,qA

q
k−1,rε

rq
k−1, (38)

εk+1 ∼ Ak,r


Ak−1,rε

r
k−1

r
= Ak,rAr

k−1,rε
r2
k−1. (39)
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In view of Lemma 1 form = 2 we have

N ′

2(yk,0) ∼ f ′(α)

1 − c3εk−1,n−2εk−1,n−1


.

According to this and (19) we find

1 + γkf ′(α) ∼ c3εk−1,n−2εk−1,n−1. (40)

Using (40) and the previously derived relations, we obtain the error relations for the intermediate approximations

εk,n−2 ∼ ak,n−2


1 + γkf ′(α)

2n−3

ε2
n−2

k

∼ ak,n−2


c3εk,n−2εk,n−1

2n−3
Ak−1,rε

r
k−1

2n−2

∼ ak,n−2c2
n−3

3 A2n−2

k−1,r


Ak−1,pAk−1,q

2n−3
εk−1

(p+q)2n−3
+r2n−2

(41)

and

εk,n−1 ∼ ak,n−1


1 + γkf ′(α)

2n−2

ε2
n−1

k

∼ ak,n−1


c3εk,n−2εk,n−1

2n−2
Ak−1,rε

r
k−1

2n−1

∼ ak,n−1c2
n−2

3 A2n−1

k−1,r


Ak−1,pAk−1,q

2n−2
εk−1

(p+q)2n−2
+r2n−1

. (42)

Similarly,

εk+1 ∼ ak,n

1 + γkf ′(α)

2n−1

ε2
n

k

∼ ak,n

c3εk,n−2εk,n−1

2n−1
Ak−1,rε

r
k−1

2n
∼ ak,nc2

n−1

3 A2n
k−1,r


Ak−1,pAk−1,q

2n−1
εk−1

(p+q)2n−1
+r2n

. (43)

Equating error exponents of εk−1 in three pairs of error relations (37)∧ (41), (38)∧ (39) and (42)∧ (43), we form the
following system of equations in unknown orders p, q and r ,rp − (p + q)2n−3

− r2n−2
= 0,

rq − (p + q)2n−2
− r2n−1

= 0,
r2 − (p + q)2n−1

− r2n
= 0.

(44)

Positive solutions of this system are p = 11 · 2n−5, q = 11 · 2n−4, r = 11 · 2n−3. Therefore, the R-order of convergence of
families (21)∧ (19) and (22)∧ (19) is at least 11 · 2n−3 for n ≥ 3. For example, the R-order of the three-point families (21)
and (22) is at least 11, the four-point families have the R-order at least 22, etc. (see Table 1), assuming that γk is calculated
by (19).

The case n = 2 slightly differs from the previous analysis; Newton’s interpolating polynomial is constructed at the nodes
xk−1 (=yk−1,0), yk−1 (=yk−1,1) and xk (=yk,0) and we may formally take p = 1 in (44) and remove the first equation. Then
the system of Eqs. (44) reduces to

rq − (q + 1)− 2r = 0,
r2 − 2(q + 1)− 4r = 0,

with the solutions q =
1
4 (5+

√
33) and r =

1
2 (5+

√
33). Therefore, families (21)∧ (19) and (22)∧ (19) of two-pointmethods

with memory have the R-order at least 1
2 (5 +

√
33) ≈ 5.372.

According to the previous study we can state the following convergence theorem.

Theorem 3. Let the varying parameter γk in the iterative formulae (21) and (22) be calculated by (19). If an initial approximation
x0 is sufficiently close to a simple zero α of f , then the R-order of convergence of families (21) and (22) of n-point methods with
memory is at least 11 · 2n−3 for n ≥ 3 and at least 1

2 (5 +
√
33) ≈ 5.372 for n = 2.
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Method (III)—Newton’s interpolation of third degree.
The calculation of γk by (20) uses more information compared to (19) and we expect to achieve faster convergence. The

presented convergence analysis confirms our assumption.
Let n ≥ 4 and assume that the R-order of the iterative sequences {yk,n−3}, {yk,n−2}, {yk,n−1} and {yk} is at least p, q, s and

r , respectively, that is,

εk,n−3 ∼ Ak,pε
p
k , εk,n−2 ∼ Ak,qε

q
k, εk,n−1 ∼ Ak,sε

s
k, εk+1 ∼ Ak,rε

r
k.

Hence

εk,n−3 ∼ Ak,p


Ak−1,rε

r
k−1

p
= Ak,pA

p
k−1,rε

rp
k−1, (45)

εk,n−2 ∼ Ak,q


Ak−1,rε

r
k−1

q
= Ak,pA

q
k−1,rε

rq
k−1, (46)

εk,n−1 ∼ Ak,s


Ak−1,rε

r
k−1

s
= Ak,sAs

k−1,rε
rs
k−1, (47)

εk+1 ∼ Ak,r


Ak−1,rε

r
k−1

r
= Ak,rAr

k−1,rε
r2
k−1. (48)

According to Lemma 1 form = 3, we have

N ′

3(yk,0) ∼ f ′(α)

1 + c4εk−1,n−3εk−1,n−2εk−1,n−1


.

From the last relation and (20) we find

1 + γkf ′(α) ∼ c4εk−1,n−3εk−1,n−2εk−1,n−1. (49)

Combining (49) and the previously derived relations, we derive the following error relations

εk,n−3 ∼ ak,n−3


1 + γkf ′(α)

2n−4

ε2
n−3

k

∼ ak,n−3c2
n−4

4 A2n−3

k−1,r


Ak−1,pAk−1,qAk−1,s

2n−4
εk−1

2n−3r+2n−4(p+q+s)
, (50)

εk,n−2 ∼ ak,n−2


1 + γkf ′(α)

2n−3

ε2
n−2

k

∼ ak,n−2c2
n−3

4 A2n−2

k−1,r


Ak−1,pAk−1,qAk−1,s

2n−3
εk−1

2n−2r+2n−3(p+q+s)
, (51)

εk,n−1 ∼ ak,n−1


1 + γkf ′(α)

2n−2

ε2
n−1

k

∼ ak,n−1c2
n−2

4 A2n−1

k−1,r


Ak−1,pAk−1,qAk−1,s

2n−2
εk−1

2n−1r+2n−2(p+q+s)
, (52)

εk+1 ∼ ak,n

1 + γkf ′(α)

2n−1

ε2
n

k

∼ ak,nc2
n−1

4 A2n
k−1,r


Ak−1,pAk−1,qAk−1,s

2n−1
εk−1

2nr+2n−1(p+q+s)
. (53)

In a similar way as before, equating exponents of εk−1 in four pairs of error relations (45)∧ (50), (46)∧ (51), (47)∧ (48) and
(52)∧ (53), we form the following system of equations,

rp − (p + q + s)2n−4
− r2n−3

= 0,
rq − (p + q + s)2n−3

− r2n−2
= 0,

rs − (p + q + s)2n−2
− r2n−1

= 0,
r2 − (p + q + s)2n−1

− r2n
= 0.

(54)

Positive solutions of this system are p = 23 · 2n−7, q = 23 · 2n−6, r = 23 · 2n−4. Therefore, the R-order of convergence of
families (21)∧ (20) and (22)∧ (20) is at least 23 ·2n−4 for n ≥ 4. For example, the R-order of the four-point families (21) and
(22) is at least 23.

To find the R-order of the three-point families (21)∧ (20) and (22)∧ (20), we put n = 3 and p = 1 in system (54), remove
the first equation and solve the system of three equationsrq − (1 + q + s)− 2r = 0,

rs − 2(1 + q + s)− 4r = 0,
r2 − 4(1 + q + s)− 8r = 0.
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Table 2
The efficiency indices of multipoint methods with/without memory.

n Method (I) Method(II) Method (III) No memory
j = 0 j = 1 j = 2 j =3

2 1.645 1.710 1.751 1.817 1.587
3 1.706 1.732 1.778 1.821 1.836 1.682
4 1.759 1.762 1.783 1.820 1.856 1.872 1.741

Positive solutions are q =
1
8


11 +

√
137


, s =

1
4


11 +

√
137


, r =

1
2


11 +

√
137


. Therefore, in this particular case the

R-order is at least 1
2


11 +

√
137 ) ≈ 11.352.

It remains to examine the case n = 2. The corresponding Newton interpolating polynomial is constructed through the
points yk−1,−1 = xk−1 + γk−1f (xk−1), xk−1, yk−1,1 and xk. Analysis of the sequences {yk,−1}, {yk−1,1} and {xk} (of orders p, q
and r) and the same argumentation as above lead to the systemrp − r − p − q − 1 = 0,

rq − 2r − p − q − 1 = 0,
r2 − 4r − 2p − 2q − 2 = 0.

Hence, we find r = 6 and conclude that the lower bound of the R-order of the two-point methods with memory (21)∧ (20)
and (22)∧ (20) is at least six.

Our results are summarized in the following theorem.

Theorem 4. Let the varying parameter γk in the iterative formulae (21) and (22) be calculated by (20). If an initial approximation
x0 is sufficiently close to a simple zero α of f , then the R-order of convergence of families (21) and (22) of n-point methods with
memory is at least 23 · 2n−4 for n ≥ 4, at least 1

2 (11 +
√
137) ≈ 11.352 for n = 3 and 6 for n = 2.

Remark 3. From Theorems 3 and 4, we conclude that the multipoint methods for n > 3 are only of theoretical importance;
indeed,multipointmethodswith extraordinary fast convergence produce root approximations of considerable accuracy, not
required in solving most practical problems. However, in this paper we have studied general families and general results on
the convergence rate as a contribution to the general theory of iterative processes, emphasizing important particular cases
n = 2 and n = 3.

The lower bounds of the R-order of families (21) and (22) for γk calculated by (18)–(20) are given in Table 1 for several
entries of j and n.

From Table 1we observe that the R-order of convergence of families (21) and (22)withmemory is considerably increased
related to the corresponding basic families (1) and (5) without memory (entries in the last column). The increment in
percentage is also displayed. It is evident that the self-corrections (19) and (20), obtained by Newton’s interpolation with
divided differences, give the best results. It isworth noting that the improvement of convergence order in all cases is attained
without any additional function evaluations, which points to a very high computational efficiency of the proposed methods
with memory. Several values of the efficiency index

E(IM) = r1/θ ,

where r is the R-order of the considered iterative method (IM) and θ is the number of function evaluations per iterations,
are given in Table 2. Numerical examples given in the next section entirely confirm the theoretical results presented in
Theorems 2–4.

Remark 4. It is clear that the use of Newton’s interpolatory polynomials of higher order than 3 can provide further increase
of convergence order of n-point methods for n ≥ 3. For example, using the described convergence analysis it is not difficult
to prove that the R-order of the fourth-order families (21) and (22) with memory is 12 if the self-correcting parameter is
calculated as

γk = −
1

N ′

4(xk)
(55)

(see numerical results in Tables 3 and 4). However, for the reasons given in Remark 3, we are not interested in root-finders
of extremely high order.

5. Numerical examples

We have tested families (1) and (5) without memory and the corresponding families (21) and (22) with memory using
the programming packageMathematicawith multiple-precision arithmetic. We regard that a proper challenge in designing
root-findingmethods is to develop iterativemethods of as high as possible computational efficiency rather than very fast but
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Table 3
f (x) = e−x2 (x − 2)(1 + x3 + x6), x0 = 1.8, α = 2.

Methods |x1 − α| |x2 − α| |x3 − α| rc (56)

K–T n = 2 1.59(−3) 2.89(−11) 3.20(−42) 3.998

(57) 1.59(−3) 7.57(−13) 5.36(−54) 4.414
(59) 1.59(−3) 1.69(−14) 2.90(−69) 4.990
(60) 1.59(−3) 1.14(−15) 4.60(−81) 5.384
(61) 1.59(−3) 1.85(−17) 1.05(−100) 5.973

Z–L–H n = 2 1.34(−3) 8.42(−12) 1.34(−44) 3.999

(57) 1.34(−3) 2.33(−13) 2.07(−56) 4.411
(59) 1.34(−3) 5.04(−15) 6.85(−72) 4.978
(60) 1.34(−3) 3.16(−16) 5.36(−84) 5.367
(61) 1.34(−3) 2.52(−18) 1.68(−106) 5.988

K–T n = 3 6.43(−6) 2.01(−40) 1.80(−316) 8.000

(57) 6.43(−6) 1.38(−43) 3.13(−362) 8.459
(58) 6.43(−6) 6.86(−47) 1.50(−415) 8.998
(59) 6.43(−6) 2.53(−51) 1.39(−505) 10.004
(60) 6.43(−6) 3.20(−58) 3.11(−634) 11.013
(61) 6.43(−6) 7.82(−63) 3.12(−704) 11.274
(55) 6.43(−6) 4.27(−61) 4.82(−723) 11.996

Z–L–H n = 3 7.20(−7) 2.50(−49) 5.23(−389) 7.999

(57) 7.20(−7) 1.91(−52) 3.73(−438) 8.463
(58) 7.20(−7) 8.96(−56) 1.66(−495) 8.992
(59) 7.20(−7) 1.76(−60) 9.34(−597) 10.003
(60) 7.20(−7) 9.29(−68) 1.69(−737) 10.999
(61) 7.20(−7) 9.26(−70) 7.11(−783) 11.339
(55) 7.20(−7) 2.29(−76) 1.08(−907) 11.962

expensive methods. Nevertheless, for demonstration of convergence behaviour of the proposed methods and comparison
purpose, we present in Tables 3 and 4 approximations of high accuracy but only for two-point and three-point methods.
Multipoint methods for n > 3 are very seldom required for solving practical problems.

The errors |xk − α| of approximations to the zeros are given in Tables 3 and 4, where A(−h) denotes A × 10−h. These
tables include the values of the computational order of convergence rc calculated by the formula [8]

rc =
log |f (xk)/f (xk−1)|

log |f (xk−1)/f (xk−2)|
, (56)

taking into consideration the last three approximations in the iterative process.We have chosen the following test functions:

f (x) = e−x2(x − 2)

1 + x3 + x6


, α = 2, x0 = 1.8,

f (x) = cos 2x + ex
2
−1 sin x − 2, x0 = 1.33, α = 1.447794857468 . . . .

For better readability, in this section we display explicitly five accelerating formulae for the calculation of the varying
parameter γk, previously given by (18)–(20) and (31):

γk = −
xk − xk−1

f (xk)− f (xk−1)
, (57)

γk = −
yk,0 − yk−1,n−2

f (yk,0)− f (yk−1,n−2)
, (58)

γk = −
yk,0 − yk−1,n−1

f (yk,0)− f (yk−1,n−1)
, (59)

γk = −
1

N ′

2(yk,0)
= −

1
N ′

2(xk)
, (60)

γk = −
1

N ′

3(yk,0)
= −

1
N ′

3(xk)
. (61)

In all numerical examples, the initial value γ0 = 0.01 was used.
From Tables 3 and 4 andmany tested examples we can conclude that all implementedmethods produce approximations

of great accuracy. Good initial approximations were obtained using an efficient method given in [9]. We observe that
the methods with memory considerably increase the accuracy of obtained results. The quality of the calculation of γk by
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Table 4
f (x) = cos 2x + ex

2
−1 sin x − 2, x0 = 1.33, α = 1.44779 . . ..

Methods |x1 − α| |x2 − α| |x3 − α| rc (56)

K–T n = 2 4.56(−3) 5.76(−9) 1.50(−32) 3.996

(57) 4.56(−3) 3.38(−10) 1.25(−41) 4.406
(59) 4.56(−3) 2.67(−11) 2.16(−52) 4.989
(60) 4.56(−3) 1.46(−12) 2.66(−63) 5.342
(61) 4.56(−3) 4.85(−13) 8.32(−73) 5.991

Z–L–H n = 2 8.84(−4) 1.84(−12) 3.48(−47) 3.999

(57) 8.84(−4) 1.52(−13) 5.94(−57) 4.444
(59) 8.84(−4) 8.89(−15) 8.83(−70) 5.001
(60) 8.84(−4) 1.93(−16) 3.95(−84) 5.346
(61) 8.84(−4) 1.34(−17) 2.03(−100) 5.993

K–T n = 3 7.71(−5) 8.06(−31) 1.14(−238) 7.999

(57) 7.71(−5) 2.77(−33) 9.03(−274) 8.454
(58) 7.71(−5) 1.73(−35) 3.46(−311) 8.995
(59) 7.71(−5) 3.93(−39) 5.44(−382) 9.998
(60) 7.71(−5) 1.73(−45) 1.27(−491) 10.975
(61) 7.71(−5) 1.07(−46) 1.55(−521) 11.344
(55) 7.71(−5) 2.98(−46) 3.13(−543) 12.001

Z–L–H n = 3 2.18(−6) 1.46(−44) 5.78(−350) 7.999

(57) 2.18(−6) 9.88(−47) 1.33(−388) 8.474
(58) 2.18(−6) 3.40(−49) 1.53(−434) 9.002
(59) 2.18(−6) 2.01(−55) 7.29(−546) 10.002
(60) 2.18(−6) 2.81(−61) 3.21(−665) 11.003
(61) 2.18(−6) 2.99(−67) 9.74(−754) 11.279
(55) 2.18(−6) 4.44(−66) 2.01(−782) 12.001

(57)–(61) can also be noticed from Tables 3 and 4: Newton’s interpolation of higher degree evidently gives the best results,
which is expected having in mind that this approach provides the highest order of convergence. From the last column
of Tables 3 and 4 we observe that the computational order of convergence rc , calculated by (56), matches very well the
theoretical order given in Theorems 2–4.

We end this paper with the conclusion that the considerable increase of the R-order of convergence (even up to 50%,
see Table 1) of families (21) and (22) with memory is attained without any additional function evaluations per iteration,
indicating a very high computational efficiency of the proposed methods with memory. Finally, note that the order of n-
point methods (21) and (22) with memory is higher than 2n (n ≥ 2), but it does not refute the Kung–Traub conjecture since
this hypothesis is related only to the methods without memory such as (1) and (5).
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