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a b s t r a c t

We discuss accelerating convergence of multipoint iterative methods for solving scalar
equations, using particular type rational interpolant. Both derivative-free and Newton-
type methods are investigated simultaneously. As a conclusion a Theorem of König’s type
for multipoint iterations is stated. A new optimal multipoint family of methods based on
rational interpolation is constructed. The iteration uses n function evaluations per cycle and
O(j) operations in jth step of a single iteration to obtain 2n−1 order of convergence. Several
equivalent forms of the obtained iterates and development techniques are presented.
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1. Introduction

Multipointmethods are among themost efficient tools in approximating a single root of a nonlinear equation by iterative
means. The search for reliable methods to construct these powerful root-finders is very intensive and has increased over the
years. For details and relevant references, the reader is referred to [1–3] or [4]. There is undoubtedly a tight relation between
function interpolation and iterative root-finders. The aim of this communication is to investigate the use of a special type of
rational interpolation in the construction of multipoint methods.

The first optimal two-pointmethodwas constructed byOstrowski [5] in 1960. For the approximate solution of a nonlinear
equation f (x) = 0, Ostrowski derived the two-point method

yk = xk −
f (xk)
f ′(xk)

,

xk+1 = xk −
f (yk) − f (xk)
2f (yk) − f (xk)

·
f (xk)
f ′(xk)

,

= yk −
f (xk)

f (xk) − 2f (yk)
·
f (yk)
f ′(xk)

,

(1)

using interpolation of the function f through points xk and yk by a rational function w(t) =
t−a
bt−c , with a linear numerator.

This numerator structure enables direct evaluation of a unique root of w. The root is taken as the next approximation of the
two-point iterative scheme (1). Newton’s method is used as a pre-conditioner. We follow Ostrowski’s idea to define new
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optimal n-point families of methods, with and without derivatives. This approach can also be used to double the rate of
convergence of any optimal multipoint scheme at the cost of one new function evaluation per iteration. Methods of order
eight and sixteen with Newton’s pre-conditioner were recently designed in this manner in [6,7]. One-point methods with
memory of this type were discussed in [8–10], etc. This communication aims to give a unified approach for both derivative-
free and Newton-type multipoint methods based on the specific type rational interpolant. Several equivalent forms and
ways to derive formulas are presented.

In this communication we are mainly concerned with the theoretical aspects when constructing optimal root-finding
algorithms. A general method which provides reliable means of convergence upgrade is presented. Particular methods of
such type, with practical relevance, have been developed in earlier research andwe cite themhere and give explicit formulas
at the end. For details on numerical test results the reader is referred to particular publications.

Relying on polynomial interpolation in the development of iterative methods has been long recognized as a fruitful
technique. Spurred by earlier research examples, in this paper we explore a different type of interpolation, namely
with rational functions. It is sometimes encountered that modelling by rational functions is superior to polynomial
approximation. The key issue is the ability tomodel functionswith poles. Quite often polynomials exhibit poor interpolating
properties due to the presence of poles in an analytic continuation of the function being modelled. Such poles can ruin a
polynomial approximation, even when restricted to real valued arguments. A rational function approximation, on the other
hand, will show good approximating properties as long as it has a high enough polynomial degree in its denominator. For
details of the mentioned characteristics of the described approximations see, e.g., [11,12]. For these reasons we develop a
strategy for multipoint iterations based on rational interpolation.

The paper is organized as follows. In the succeeding section we give basic definitions and properties regarding the topic
to be explored. In Section 3 we use a rational interpolant to increase the order of convergence of an arbitrary optimal
scheme, resulting in an efficiency advancement. In Section 4 convergence properties are proven. In the final section the
same approach is employed to design a new optimal n-point family of iterative methods.

2. Preliminaries

Let a class F be defined by

F = {f |f is an analytic function defined on an open connected set Df ⊂ C which contains a simple zero
αf of f and f ′ does not vanish on Df }.

Definition 2.1. Let ϕ be an iteration function and αf denote a zero of the function f . If there exists an r = r(ϕ) ∈ N such
that for any f ∈ F ,

lim
x→αf

|ϕ(f )(x) − αf |

|x − αf |
r

= A (2)

exists for a constant A which does not vanish at least for one f ∈ F , then ϕ is said to have the order of convergence r . The
constant A > 0 is called an asymptotic error constant of iteration ϕ.

Definition 2.1 of order of convergence will suffice for multipoint methods without memory, which are the topic of this
communication.

We consider the case where branch cuts of an analytic function are not taken in a neighbourhood of the sought zero
α. It is known that root-finding algorithms are sensitive to the presence of branch points. This issue is not the topic of our
communication, still we point to a recent elegant idea that was proposed in [13] to overcome this problem.

The goal in constructing iterative methods for solving nonlinear equations is to attain as high as possible order of
convergence with the minimal computational cost. It is closely related to terms of efficiency and optimality of iteration
functions. Introduce the notion of information volume as the number of new function evaluations (counting derivatives as
well). Comparison between iterative methods can be carried out using efficiency index. The efficiency index of the iteration
ϕ with order of convergence r and volume of information n is defined with EI(ϕ) = r1/n. This is a very reduced efficiency
measure since it neglects the computational cost of the very iterative formula. Many authors in recent publications are
deceived by this simplification and the only aim appointed is to achieve as high as possible order of convergence. This is
particularly characteristic and hazardous for methods with memory that use a large amount of self-correcting parameters.
In this paper we make count of a number of rational operations per step in addition to the information volume.

First formal statement of limitation regarding efficiency of multipoint methods dates back to 1974. In their fundamental
paper [14], H.T. Kung and J.F. Traub stated the following hypothesis.
Kung–Traub’s conjecture: Multipoint iterative methods without memory, costing n+ 1 function evaluations per iteration,
have order of convergence at most 2n.

Iterations without memory using n + 1 function evaluations and order 2n are called optimal. Optimal methods have the
efficiency index EI(ϕ) = 2(n−1)/n.
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When designing multipoint methods, we are dealing with clustered sets of points. Loss of significant figures and
instability of calculation often occur in such scenarios. Multi-precision arithmetic and numerically stable formulas help
overcome these issues. Divided differences scheme shows good numerical behaviour with clustered data. For this reason
we use them in the development techniques for multipoint iterations. In the sequel we recall definition and some basic
properties of divided differences [15,16].

For xi ≠ xj when i ≠ j divided differences are defined as

f [x0] = f (x0),

f [x0, x1] =
f [x0] − f [x1]

x0 − x1
,

f [x0, x1, . . . , xn] =
f [x0, . . . , xn−1] − f [x1, . . . , xn]

x0 − xn
.

Properties of divided differences that are of relevance:
Linearity:

(f + h)[x0, x1, . . . , xn] = f [x0, x1, . . . , xn] + h[x0, x1, . . . , xn],
(λ · f )[x0, x1, . . . , xn] = λ · f [x0, x1, . . . , xn].

Symmetry:

f [x0, x1, . . . , xn] = f [xi0 , xi1 , . . . , xin ],

where i0, i1, . . . , in is any permutation of the set {0, 1, . . . , n}.
Leibnitz rule:

(f · h)[x0, x1, . . . , xn] =

n
j=0

f [x0, . . . , xj]h[xj, . . . , xn].

The last formula is in fact due to Popoviciu [17,18] and Steffensen [19], but since it generalizes the nth derivative of the
product of functions it is usually credited to Leibnitz.

Due to continuity, the definition of divided differences can be generalized to cases when some or all xj coincide.

f [x0, x0] = f ′(x0), f [x0, . . . , x0  
m+1

] =
f (m)(x0)

m!
.

The above listed properties remain valid with this definition of divided differences in a broader sense.

3. Accelerating convergence

We restrict our study to solving a scalar nonlinear equation of the form f (x) = 0 by iterative means, where the sought
zero α is simple. The multipoint iteration function of the form xk+1 = ϕ(xk), k ∈ N, is investigated for the close enough
initial value x0. Auxiliary values within a single multipoint iteration will be denoted with yj = yj(k), j = 0, . . . , n, with
the iteration counter k omitted. It is assumed that y0 = xk, y1 = y0 + γ f (y0), γ ∈ C, and xk+1 = yn. Note that γ = 0 is
allowed. In this manner both Steffensen-type methods and Newton-type iterations are explored simultaneously.

The following multipoint optimal scheme is considered
y0 = xk, y1 = y0 + γ f (y0),

y2 = y0 −
f (y0)

f [y1, y0]
,

yj = Ψj(y0, y1, . . . , yj−1), j = 3, 4, . . . , n − 1,
xk+1 = yn−1,

(3)

where each yj = Ψj(y0, y1, . . . , yj−1), j ≥ 2, is an optimal j-point scheme of order 2j−1 using j evaluations of f . Obviously,
the approximation y2 in (3) defines Newton’s step for γ = 0 and Traub-Steffensen’s iteration [1,20] when γ ≠ 0.

The following two sampling cases are simultaneously considered:

1° for γ = 0 information used: f (y0), f ′(y0), f (y2), . . . , f (yn−2);
2° for γ ≠ 0 information used: f (y0), f (y1), f (y2), . . . , f (yn−2).

Both sampling cases have been proved to provide best efficiency for multipoint methods, see [14]. Optimal iteration scheme
of the form (3) with sampling cases 1o or 2o will be denoted NS-iteration, after Newton and Steffensen.

Introduce Hermite polynomial basis: B0,n(t) = 1,

Bj,n(t) = (t − yn−j)Bj−1,n(t), j = 1, . . . , n.
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We thus write [15,16]

z(t) =

n−1
j=0

z[yn−1, . . . , yn−1−j]Bj,n(t) + z[yn−1, . . . , y0, t]Bn,n(t), (4)

for any function z, where for the summation index value j = 0 the addend equals z[yn−1].
The order of convergence of the scheme (3) will be increased by an additional step using one more function evaluation

f (yn−1). A new approximation yn of the sought zero α will be calculated as the unique zero of a rational function

wn(t) =
Pn(t)
Qn(t)

=
t − yn

n−2
j=0

ajBj,n(t)
, (5)

where the coefficients yn and aj take such values that the interpolation conditions

wn(yj) = f (yj), j = 1, . . . , n − 1, and wn[y1, y0] = f [y1, y0], (6)

are satisfied.
Conditions (6) can be transformed into a set of equations

Qn −
Pn
f


[yn−1, . . . , yj] = 0, j = 0, . . . , n − 1, (7)

where for j = n − 1 the above condition takes form

Qn −

Pn
f


[yn−1] = 0. Since

Pn[yn−1, yn−2] = 1,
Pn[yn−1, . . . , yj] = 0, for 0 ≤ j < n − 2,
Qn[yn−1, . . . , yn−1−j] = aj, for 0 ≤ j < n − 1,
Qn[yn−1, . . . , y0] = 0,

and by the Leibnitz rule for divided differences, conditions (7) in matrix form read



1
f
[yn−1] 1 0 · · · 0

1
f
[yn−1, yn−2] 0 1 · · · 0

1
f
[yn−1, . . . , yn−3] 0 0 · · · 0

· · ·

1
f
[yn−1, . . . , y1] 0 0 · · · 1

1
f
[yn−1, . . . , y0] 0 0 · · · 0





yn
a0
a1
...

an−3
an−2

 =



yn−1
1
f
[yn−1]

yn−1
1
f
[yn−1, yn−2] +

1
f
[yn−2]

yn−1
1
f
[yn−1, . . . , yn−3] +

1
f
[yn−2, yn−3]

...

yn−1
1
f
[yn−1, . . . , y1] +

1
f
[yn−2, . . . , y1]

yn−1
1
f
[yn−1, . . . , y0] +

1
f
[yn−2, . . . , y0]



.

The last row of the matrix reduces to

yn = yn−1 +

1
f [yn−2, . . . , y0]
1
f [yn−1, . . . , y0]

. (8)

Remark 3.1. Note that Newton’s and Traub-Steffensen’s methods are both of the form (8).

From the table of divided differences and formula (8) it is easily estimated that the new approximation requires O(n2)
rational operations in addition to one new function evaluation.

We explore some equivalent forms of the formula (8). Namely, with a change of polynomial basis in the denominator Qn
of the rational function wn, we can obtain different appearance of the investigated iteration.

By reordering points in the Hermite polynomial basis we obtain the first equivalent formula

yn = y0 +

1
f [y1, . . . , yn−1]

1
f [y0, . . . , yn−1]

.
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If we use Taylor’s polynomial basis Tj(t) = (t − y0)j, j ∈ N, we can rewrite

Qn(t) =

n−2
j=0

qjTj(t),

for some coefficients qj ∈ C. It is convenient to consider interpolating conditions (6) in the form
(fQn − Pn)[y0] = 0, (fQn − Pn)[yk, y0] = 0, k = 1, 2 . . . , n − 1,

or equivalently
1 f (y0) 0 0 · · · 0
0 f [y1, y0] f (y1) f (y1)(y1 − y0) · · · f (y1)(y1 − y0)n−3

0 f [y2, y0] f (y2) f (y2)(y2 − y0) · · · f (y2)(y2 − y0)n−3

· · ·

0 f [yn−1, y0] f (yn−1) f (yn−1)(yn−1 − y0) · · · f (yn−1)(yn−1 − y0)n−3




yn
q0
q1
...

qn−2

 =


y0
1
1
...
1

 .

Determinants for the Cramer’s rule read:

∆ =


f [y1, y0] f (y1) f (y1)(y1 − y0) · · · f (y1)(y1 − y0)n−3

f [y2, y0] f (y2) f (y2)(y2 − y0) · · · f (y2)(y2 − y0)n−3

· · ·

f [yn−1, y0] f (yn−1) f (yn−1)(yn−1 − y0) · · · f (yn−1)(yn−1 − y0)n−3


=

n−1
j=1

(−1)j+1f [yj, y0]
n−1

i=1
i≠j

f (yi)

V (y1, . . . , yj−1, yj+1, . . . , yn−1)

=

n−1
j=1

f [yj, y0]
n−1

i=1
i≠j

f (yi)
yi − yj


V (y1, . . . , yn),

where the symbol V stands for the Vandermonde determinant.

∆(yn) =


y0 f (y0) 0 0 · · · 0
1 f [y1, y0] f (y1) f (y1)(y1 − y0) · · · f (y1)(y1 − y0)n−3

1 f [y2, y0] f (y2) f (y2)(y2 − y0) · · · f (y2)(y2 − y0)n−3

· · ·

1 f [yn−1, y0] f (yn−1) f (yn−1)(yn−1 − y0) · · · f (yn−1)(yn−1 − y0)n−3


= y0∆ − f (y0)

n−1
j=1

(−1)j+1
n−1

i=1
i≠j

f (yi)

V (y1, . . . , yj−1, yj+1, . . . , yn−1)

= y0∆ − f (y0)
n−1
j=1

n−1
i=1
i≠j

f (yi)
yi − yj


V (y1, . . . , yn).

We conclude

yn =
1(yn)

∆
= y0 −

n−1
j=1

n−1
i=1
i≠j

f (yi)
yi−yj

n−1
j=1

f [yj, y0]
n−1
i=1
i≠j

f (yi)
yi−yj

f (y0). (9)

Formula (9) can be regarded as the ‘barycentric’ form of iterative formula (8). Such form is known to be computationally
robust and very reliable [21,22].

Another equivalent form of (8) can be obtained using expanded form of divided differences of the reciprocal function [23]

1
f
[y0, . . . , ys] =

s
j=1

(−1)j


0=i0<···<ij=s

j−1
l=0

f [yil , . . . , yil+1 ]

f (yi0)f (yi1) · · · f (yij)
.

4. Convergence theorem

In this section we show that the presented approach of rational function interpolation provides the desired optimal
convergence order 2n−1.
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Theorem 4.1. Let f (x) ∈ F and define the iteration function
y0 = xk, y1 = y0 + γ f (y0),
yj = Ψj(y0, y1, . . . , yj−1), j = 2, 3, . . . , n − 1,

xk+1 = yn = yn−1 +

1
f [yn−2, . . . , y0]
1
f [yn−1, . . . , y0]

,

(10)

where each yj = Ψj(y0, y1, . . . , yj−1), 2 ≤ j ≤ n − 1, is an optimal NS-iteration of order 2j−1. Then the scheme (10) is an
optimal NS-iteration and attains 2n−1 order of convergence.

Proof. Errors of approximations to the sought zero α obtained in a single iteration cycle will be labelled εj = α − yj, j =

0, . . . , n, with the iteration counter k omitted. According to the construction of (10) we have

εj = O

ε2j−1

0


, j = 1, . . . , n − 1. (11)

Introduce functions ρ(t) =
t−α
f (t) and R(t) = Pn(t)ρ(t)− (t −α)Qn(t), where Pn and Qn satisfy (7). Since α is an isolated zero

of an analytic function f ∈ F it follows that ρ(t) is analytic within some Jordan curve γ ⊂ Df , enclosing the points yj and
bounded on γ . Also, ρ(α) ≠ 0.

For all j = 0, . . . , n − 1 we have

R[yn−1, . . . , yj] =


Pnρ − (· − α)

Pn
f


[yn−1, . . . , yj] = 0.

Thus, (t −α)Qn(t) is the unique interpolating polynomial of minimal degree of the function ϱ(t) = Pn(t)ρ(t) and R(t) is the
error function of the interpolation. The well known remainder relation of Hermite’s interpolating polynomial (4) for t = α
reads

R(α) = ϱ[yn−1, . . . , y0, α] · Bn,n(α). (12)

Since ϱ(t) = (t − α)ρ(t) + (α − yn)ρ(t), using divided differences properties it follows

ϱ[yn−1, . . . , y0, α] = ρ[yn−1, . . . , y0] + (α − yn)ρ[yn−1, . . . , y0, α]. (13)

Substituting (13) into (12) yields

R(α) =

ρ[yn−1, . . . , y0] + Pn(α)ρ[yn−1, . . . , y0, α]


· Bn,n(α).

From the definition of R(t) we have

R(α) = Pn(α)ρ(α).

Therefore, having in mind Pn(α) = εn, it follows

εn =

ρ[yn−1, . . . , y0] ·

n−1
j=0

εj

ρ(α) − ρ[yn−1, . . . , y0, α] ·

n−1
j=0

εj

= O(ε2n−1

0 ). (14)

To obtain an asymptotic error constant of iteration (10), we rewrite assumptions (11) in the form

lim
ε0→0

|yj − α|

|y0 − α|2
j−1 = lim

ε0→0

|εj|

|ε0|2
j−1 = Aj. (15)

From (14) we find

lim
ε0→0

εn
n−1
j=0

εj

= lim
ε0→0

ρ[yn−1, . . . , y0]

ρ(α) − ρ[yn−1, . . . , y0, α] ·

n−1
j=0

εj

=
ρ(n−1)(α)

(n − 1)!ρ(α)
=

f ′(α)ρ(n−1)(α)

(n − 1)!
. (16)
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It follows from (15) and (16)

lim
ε0→0

|εn|

|ε0|2
n−1 = lim

ε0→0

|εn|

n−1
j=0

|εj|

·

n−1
j=0

|εj|

|ε0|2
n−1 =

|f ′(α)ρ(n−1)(α)|

(n − 1)!

n−1
j=1

lim
ε0→0

|εj|

|ε0|2
j−1

=
|f ′(α)ρ(n−1)(α)|

(n − 1)!

n−1
j=1

Aj. (17)

The expression for ρ(n−1)(α) in terms of f can be obtained by successive n times differentiation of f (t)ρ(t) = t − α at the
point t = α. Using Leibnitz rule, this leads to a system of equations written in matrix form:


1
1


f ′(α) 0 0 · · · 0

2
2


f ′′(α)


2
1


f ′(α) 0 · · · 0

3
3


f ′′′(α)


3
2


f ′′(α)


3
1


f ′(α) · · · 0

· · ·
n
n


f (n)(α)


n

n − 1


f (n−1)(α)


n

n − 2


f (n−2)(α) · · ·


n
1


f ′(α)


·


ρ(α)
ρ ′(α)
ρ ′′(α)

...

ρ(n−1)(α)

 =


1
0
0
...
0

 .

Cramer’s formula for ρ(n−1)(α) reads

ρ(n−1)(α)

=
(−1)n+1

n!(f ′(α))n




2
2


f ′′(α)


2
1


f ′(α) 0 · · · 0

3
3


f ′′′(α)


3
2


f ′′(α)


3
1


f ′(α) · · · 0

· · ·
n − 1
n − 1


f (n−1)(α)


n − 1
n − 2


f (n−2)(α)


n − 1
n − 3


f (n−3)(α) · · ·


n − 1
1


f ′(α)

n
n


f (n)(α)


n

n − 1


f (n−1)(α)


n

n − 2


f (n−2)(α) · · ·


n
2


f ′′(α)



. � (18)

Remark 4.1. From the proof of Theorem 4.1 we note that it holds not only for NS-iteration, but for every optimal iteration
scheme using function sampling cases 1° or 2°, defined in Section 2.

Divided differences are a generalization of derivatives, therefore Theorem 4.1 provides a multipoint version statement
of König’s result [24]:

Theorem 4.2 (König). Let

g(z) = c0(x) + c1(x)(z − x) + c2(x)(z − x)2 + · · ·

be an analytic function in the disk |z − x| < δ centred at x and g has a single pole at the point α belonging to this disk. If
|α − x| < σδ < δ, then

ck(x)
ck+1(x)

= α − x + O(σ k+2).

Corollary 4.1. Let g(z) be an analytic function in the disk D : |z − x| < δ, and g has a single simple pole at the point α belonging
to D. Let yj = Ψj(x) ∈ D for x ∈ D, j = 0, 1, . . . , n − 1, and εj = α − yj. Then

g[y0, . . . , yn−2]

g[y0, . . . , yn−1]
= α − yn−1 + O

n−1
j=0

εj


.



268 J. Džunić, I. Damnjanović / Journal of Computational and Applied Mathematics 321 (2017) 261–269

The strength of König’s type theorems is evident from their application. Let α be a simple isolated zero of an analytic
function f ∈ Df and h(z) an analytic function in a neighbourhood ofα such that h(α) ≠ 0. Then g(z) =

h(z)
f (z) is ameromorphic

function from Corollary 4.1. The existence of the function h(z) provides a possibility of choice and results in a family of
iterative procedures (17) for the solution of a nonlinear scalar equation f (x) = 0. The use of the function h(z) can also be
considered as a mean to simplify f evaluation, where applicable.

5. Rational family

We propose a new iterative scheme, with or without derivatives, for the solution of nonlinear equation
y0 = xk, y1 = y0 + γ f (y0),

yj = yj−1 +

1
f [yj−2, . . . , y0]
1
f [yj−1, . . . , y0]

, j = 2, 3, . . . , n,

xk+1 = yn.

(19)

As pointed in Remark 3.1, Newton’s and Steffensen’s methods are both of the form (8) used in (19). This allows a compact
formulation of the family (19). Using a traditional form of Newton’s and Steffensen’s methods, the family (19) reads

y0 = xk, y1 = y0 + γ f (y0),

y2 = y0 −
f (y0)

f [y0, y1]

yj = yj−1 +

1
f [yj−2, . . . , y0]
1
f [yj−1, . . . , y0]

, j = 3, . . . , n,

xk+1 = yn.

Theorem 5.1. Iteration procedure (19) is an optimal NS-iteration.

Proof. Using induction and Theorem 4.1 the optimality holds. We can derive the specific asymptotic error constant for
method (19).

Obviously, A1 = |1 + γ f ′(α)|. From (17) for j ≥ 2 we obtain

Aj =
|f ′(α)ρ(j−1)(α)|

(j − 1)!

j−1
k=1

Ak.

By induction we proceed to

Aj = |(1 + γ f ′(α))f ′(α)|2
j−2 |ρ(j−1)(α)|

(j − 1)!

j−2
k=1


ρ(k)(α)

k!

2j−k−2

.

Expressions for ρ(k)(α) from (18) can further be substituted in Aj. �

Defined in this manner the new approximation in each step can be obtained using only O(j) rational operations based
on the divided differences table in addition to j function evaluations.

An equivalent form of iteration (19) can be observed from the following equality

j
i=2

(yi − yi−1) =

1
f [y0]

1
f [yj−1, . . . , y0]

.

Particular examples of the family (10) or (19) of order four, eight and sixteen were designed (not necessarily with the
same approach) in earlier investigations. We cite here some of them.

Derivative free methods:
The scheme (19) of order 4 and n = 3

[25] :


wk = xk + γ f (xk), yk = xk −

f (xk)
f [xk, wk]

,

xk+1 = yk −
f (xk)f (wk)

f (xk)f (wk) − f (xk)f (yk) − f (yk)f (wk)
·

f (yk)
f [xk, wk]

.
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The scheme (19) of order 8 and n = 4

[26] :



wk = xk + γ f (xk), yk = xk −
f (xk)

f [xk, wk]
,

zk = yk −
f (xk)f (wk)

f (xk)f (wk) − f (xk)f (yk) − f (yk)f (wk)
·

f (yk)
f [xk, wk]

,

xk+1 = zk −
(P − Q )(zk − wk)(zk − xk)

P(zk − xk) + Q (xk + wk − yk − zk) + R(yk − wk)
,

P = f [xk, wk]f (yk)f (zk), Q = f [yk, xk]f (zk)f (wk),
R = f [zk, yk]f (xk)f (wk).

Newton-like methods:
The scheme (19) of order 4 and n = 3

Ostrowski’s method [5] :


yk = xk −

f (xk)
f ′(xk)

,

xk+1 = yk −
f (xk)

f (xk) − 2f (yk)
·
f (yk)
f ′(xk)

.

The scheme (10) of order 8 and n = 4

[6] :



yk = xk −
f (xk)
f ′(xk)

,

zk = yk −
f (xk) + βf (yk)

f (xk) + (β − 2)f (yk)
·
f (yk)
f ′(xk)

,

xk+1 = xk −
P + Q + R

Pf [zk, xk] + Qf ′(xk) + Rf [yk, xk]
f (xk),

P = (xk − yk)f (xk)f (yk), Q = (yk − zk)f (yk)f (zk),
R = (zk − xk)f (zk)f (xk).
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