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a b s t r a c t

New efficient iterative method of Halley’s type for the simultaneous inclusion of all sim-
ple complex zeros of a polynomial is proposed. The presented convergence analysis, which
uses the concept of the R-order of convergence of mutually dependent sequences, shows
that the convergence rate of the basic fourth order method is increased from 4 to 9 us-
ing a two-point correction. The proposed inclusion method possesses high computational
efficiency since the increase of convergence is attained with only one additional function
evaluation per sought zero. Further acceleration of the proposed method is carried out us-
ing the Gauss–Seidel procedure. Some computational aspects and three numerical exam-
ples are given in order to demonstrate high computational efficiency and the convergence
properties of the proposed methods.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

There are only few situations when it is possible to find an analytic solution of nonlinear equations solving real life
problems aswell as tasks of theoretical nature. The override is found in an algorithmic approach of iterative type constructed
to provide an admissible approximate solutionwithin a finite number of rational operations. In thisway the point of solution
is no longer a zero-dimensional subject, it is given its ‘width’—everything within a range of an acceptable error. Iterative
methods designed in interval arithmetic make verbatim representation of algorithms producing ‘massive’ approximating
points, assessing deviation from the exact solution at the same time.

The aim of this paper is to explore efficient Halley-like methods for the simultaneous inclusion of all simple complex
zeros of a polynomial. It can be regarded as an extension of interval version to Halley-like iterative methods, presented
in [1,2], and discussed later in [3–7].

The presented convergence analysis shows that the convergence rate of the basic fourth order method is increased
from 4 to 9. The convergence and efficiency outbreak are the aftermath of special type of corrections obtained from a two-
point iterative method of low computational complexity. The suggested algorithm achieves remarkable convergence rate
with only one additional function calculation per sought zero loop-wise. The presented data usage significantly increases
computational efficiency of an iterative method.
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Table 1
The number of basic operations.

(1) (2) (3) (4)

AS 3 6 2 2
M 0 11 3 3
D 0 0 3 3
R 0 2 0 1

Multipointmethods are among themost efficient tools in approximating a single root of a nonlinear equation by iterative
means. For details and relevant references the reader is referred to [8,9]. In the present paper we use this powerful tool fit to
the given task. Based on the new two step schemeprovided in themanuscript,wedouble the order of convergence of theHal-
ley’s single root findingmethod,while using only one additional function evaluation per iteration. This new two-step scheme
is used as a correction in Halley’s like interval procedure. This better correction implemented in simultaneous procedure
allows us to combine more polynomial information for better results, while economizing on expensive interval arithmetic.

The paper is organized as follows. The basic properties of circular complex arithmetic, necessary for the convergence
analysis and the construction of inclusion methods, are given in the Introduction. The basic Halley-like inclusion method of
the fourth order, is presented in short in Section 2 and themodifiedmethodwith the increased convergence rate is developed
in Section 3 using a suitable two-point correction. The convergence analysis of the improvedmethod is provided in Section 4.
The corresponding single-step methods are prospected in Section 5, while the results overview of computational aspects
and several numerical examples are given in Section 6.

For the reader’s convenience we give some basic properties of circular complex arithmetic introduced by Gargantini and
Henrici [10]. A circular closed region (disk) Z := {z : |z − c| ≤ r} with center c := mid Z and radius r := rad Z we will
denote by parametric notation Z := {c; r}. Complex points z are then treated as ‘degenerated’ discs of center z and radius
0. The set of complex circular intervals (disks) is denoted by K(C).

The basic circular arithmetic operations are defined as follows:
{c1; r1} ± {c2; r2} = {c1 ± c2; r1 + r2}, (1)
{c1; r1} · {c2; r2} = {c1c2; |c1|r2 + |c2|r1 + r1r2}. (2)

The inversion of a non-zero disk Z is defined by the Möbius transformation,

Z −1
= {c; r}−1

=
{c̄; r}

|c|2 − r2
(|c| > r, i.e. 0 ∉ Z). (3)

Beside the exact inversion Z −1 of a disk Z , the so-called centered inversion Z Ic defined by

Z Ic = {c; r}Ic :=

1
c
;

r
|c|(|c| − r)


⊇ Z −1 (0 ∉ Z) (4)

is often used.
Computational costs of operations (1)–(4) in number of additions + subtractions (AS), multiplications (M), divisions (D)

and extractions of a root (R) in real arithmetic are given in Table 1.
Using (3) and (4) the discs division is defined as

Z1 : Z2 = Z1 · Z −1
2 or Z1 : Z2 = Z1 · Z Ic

2 (0 ∉ Z2).

If F is a circular complex function and the implication
Z1 ⊆ Z2 H⇒ F(Z1) ⊆ F(Z2)

holds, then F is an inclusion isotone function. Consequently
z ∈ Z H⇒ F(z) ∈ F(Z),

holds.
More details about circular arithmetic can be found in the books [11,4,12]. Throughout this paper disks in the complex

plane will be denoted by bolded capital letters. Vectors of disks will also be denoted by bolded capital letters without risk
of confusion.

To estimate the convergence rate of interval inclusion methods for solving equations, we follow the approach proposed
by Alefeld and Herzberger [11, Appendix A] and M. Petković [4, Chapter 1] based on the concept of R-order of convergence,
introduced by Ortega and Rheinboldt [13]. In this way the lacks of classical definition of order of convergence is overcome.

Assume that Z∗
∈ K(C) is the limit of the sequence {Z (m)

} of circular complex intervals belonging to K(C) such that
Z∗

⊆ Z (m). One of the possibility to measure the deviation of an element Z (m) of the sequence produced by an iterative
inclusion method ℑ from the limit Z∗ can be expressed by a nonnegative real number

h(m)
= d(Z (m)) − d(Z∗),

where d(Z (m)) := 2 rad Z (m) (see [11, Appendix A]). In particular, if Z∗
= z∗ is a point in the complex plane, we have

h(m)
= d(Z (m)) = 2 rad Z (m).

We note that {h(m)
} is the null sequence.
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Definition 1.1. Let {Z (m)
} be the sequence of disks generated by the simultaneous inclusion method ℑ that converges to z∗.

The R-factor Rs{Z (m)
} of the sequence for the real number s ≥ 1 is defined by

Rs{Z (m)
} =

 lim
m→∞

sup

h(m)

1/m
, s = 1,

lim
m→∞

sup

h(m)

1/sm
, s > 1.

Definition 1.2. Let C(ℑ, z∗) be the set of all sequences produced by the method ℑ for which

lim
m→∞

Z (m)
= z∗ and z∗

∈ Z (m) (m = 0, 1, . . .).

The R-factor Rs(ℑ, z∗) of ℑ at z∗ is defined by

Rs(ℑ, z∗) = sup

Rs

Z (m)


:

Z (m)


∈ C(ℑ, z∗)


.

Definition 1.3. The R-order OR(ℑ, z∗) of ℑ at z∗ is defined by

OR(ℑ, z∗) =


+∞, if Rs(ℑ, z∗) = 0, for all s ≥ 1,
inf{s : s ∈ [1, ∞), Rs(ℑ, z∗) = 1}, otherwise.

2. Total-step Halley-like method

Let us consider a monic polynomial of degree n ≥ 3

P(z) = zn + an−1zn−1
+ · · · + a1z + a0 =

n
j=1

(z − ζj), (ai ∈ C)

with simple zeros ζ1, . . . , ζn and let

σk,i :=

n
j=1
j≠i

(zi − ζj)
−k (k = 1, 2, i ∈ In := {1, . . . , n}).

The vector of zeros will be denoted by ζ = (ζ1, . . . , ζn).
Using the concept of Bell’s polynomials, Wang and Zheng derived in [2] the following fixed-point relation

ζi = zi −
1

H(zi)−1 −
P(zi)
2P ′(zi)


σ 2
1,i + σ2,i

 (i ∈ In), (5)

where

H(zi) =


P ′(zi)
P(zi)

−
P ′′(zi)
2P ′(zi)

−1

.

Let us define the disks

Sk,i(X,W ) :=

i−1
j=1


INV1(zi − Xj)

k
+

n
j=i+1


INV1(zi − Wj)

k
(k = 1, 2), (6)

where X = (X1, . . . ,Xn) andW = (W1, . . . ,Wn) are vectors which components are disks and INV1 ∈ {()−1, ()Ic }.
Suppose that n disjoint disks Z1, . . . , Zn such that ζj ∈ Zj (j ∈ In) have been found. Let us put zi = mid Zi in (5). Since

ζj ∈ Zj (j ∈ In), according to the inclusion isotonicity property we obtain

ζi ∈ zi −
1

H(zi)−1 −
P(zi)
2P ′(zi)


S 2
1,i(Z, Z) + S2,i(Z, Z)

 (i ∈ In). (7)

Let Z (0)
1 , . . . , Z (0)

n be initial disjoint disks containing the zeros ζ1, . . . , ζn, that is, ζi ∈ Z (0)
i for all i ∈ In. The relation (7)

suggests the following methods for the simultaneous inclusion of all zeros of P:

Z (m+1)
i = z(m)

i − INV2


H(z(m)

i )
−1

−
P(z(m)

i )

2P ′(z(m)
i )


S 2
1,i(Z

(m), Z (m)) + S2,i(Z (m), Z (m))


, (8)

wherem = 0, 1, . . . , i ∈ In and INV2 ∈ {()−1, ()Ic }. The subscript indices ‘‘1’’ and ‘‘2’’ point to the order of application of the
inversion; namely, in the realization of the iterative formula (8) we first apply the inversion INV1 to the sums (6), and then
the inversion INV2 in the final step.
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Remark 2.1. The main part in the iterative formula (8) is Halley’s correction H(z). For this reason, this method, as well as
its modification which will be considered in this paper, are referred to as Halley-like methods.

The iterative method (8) was extensively studied in [1,2], where it was proved that the order of convergence of the
method (8) is four.

3. The improved inclusion method

The interval inclusion method (8) can be accelerated following Nourein’s approach with corrections [14], explored in
papers [15,16]

Z (m+1)
i = z(m)

i −
1

H(z(m)
i )

−1
−

1
2N(z(m)

i )

S 2
1,i(Z

(m)
C , Z (m)

C ) + S2,i(Z
(m)
C , Z (m)

C )
 , (9)

(i ∈ In), where

Z (m)
C =


Z (m)
C,1 , . . . , Z (m)

C,n


, Z (m)

C,i = Z (m)
i − C


z(m)
i


,

and C(z) is Newton’s

N(z) =
P(z)
P ′(z)

or Halley’s correction

H(z) =


P ′(z)
P(z)

−
P ′′(z)
2P ′(z)

−1

,

which appear in the well-known iterative formulas z(m+1)
= z(m)

− N

z(m)


and z(m+1)

= z(m)
− H


z(m)


with the conver-

gence order two and three, respectively.
When the exact inversions (INV1 = INV2 = ()−1) are used in (9), it was proved in [5] that the lower bound of the R-order

of convergence of the interval method (9) is OR(9) ≥ 2 +
√
7 ∼= 4.646. The analysis presented in [5] (see, also, [1]) shows

that further increase of convergence speed for the method (9) is quite limited when the exact inversion INV1 is applied to
the sums (6).

In the case when the centered inversions (INV1 = INV2 = ()Ic ) are used in (9), it was proved in [6] that the lower bound
of the R-order of convergence of the interval method (9) is OR(9) ≥ 5 or 6 depending on the used correction (Newton’s or
Halley’s), respectively.

Further improvement in convergence and efficiency rate can be obtained using even higher order correction C(z).
Multipoint methods play the crucial role in the correction design. Their aim is to bring out the most from the available
information.With such an approachwe combine twopowerful tools—simultaneous approximation andmultipointmethods,
to exhaust information for the best results.

Remark 3.1. In the sequel we will concentrate only on the centered inversion (4) used in (9). The reason for such a choice
wasminutely analyzed and explained in [5]. In short, the exact inversion (3) does give smaller disks. However, the application
of the centered inversion produces centers of resulting disks that are a much better approximating solution. In return, this
central convergence forces the contraction of the disks which leads to the accelerated convergence of interval methods.
Shifted centers obtained in the central inversion oppose convergence increase when the higher order corrections are
implemented.

In this paper we consider a two-point correction based on Halley’s iteration
y = z − H(z),

C(z) = H(z) +
P(y)
h′

3(y)
,

(10)

where

h′

3(y) = 3
P(y) − P(z)

y − z
− 2P ′(z) −

P ′′(z)
2

(y − z)

= P ′(z)

3H(z)−1(N(z) − V (z)) + N(z)−1H(z) − 3


. (11)

Here h3 is Hermite’s interpolating polynomial of third degree satisfying the conditions

h3(z) = P(z), h′

3(z) = P ′(z), h′′

3(z) = P ′′(z), h3(y) = P(y),
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Table 2
The number of basic operations.

(8) (9)N (9)H (9)TPC

AS(n) 23n2 25n2
− 2n 25n2

− 2n 29n2
+ 3n

M(n) 32n2
− n 32n2

− n 32n2
− n 38n2

D(n) 6n2
+ n 6n2

+ n 6n2
+ n 6n2

+ 3n
R(n) 2n2

+ n 2n2
+ n 2n2

+ n 2n2
+ n

where N(z) =
P(z)
P ′(z) , V (z) =

P(y)
P ′(z) . Substituting (11) in (10) we obtain the sixth-order correction in the form

y = z − H(z), V (z) =
P(y)
P ′(z)

,

C(z) = H(z) +
V (z)

3H(z)−1(N(z) − V (z)) + N(z)−1H(z) − 3
,

(12)

which combines already computed expressions N(z) and H(z) depending on P(z), P ′(z), P ′′(z), and one new polynomial
evaluation P(y) involved in V (z).

Remark 3.2. To decrease the total computational cost, before executing any iteration step it is necessary to calculate first
all corrections C


z(m)
j


.

Remark 3.3. Evaluations of the polynomial P and its derivatives P ′ and P ′′, as well as the necessary expressions such as
N, H, V , etc., are calculated in floating-point arithmetic. More precisely, since we deal with methods of very high order we
use multiprecision arithmetic which provides considerably high precision of intermediate results. In this way the rounding
errors in scalar quantities are avoided and the inclusion property is preserved (each disk contains one zero in each iteration).
Even when floating-point arithmetic of lower precision is employed (but to the extend when the radii of disks do not
exceed a machine precision), the analyzes of dynamical stability of existing circular interval methods shows that interval
methods preserve their order of convergence when the upper bound of rounding errors δ is of the same order as r , where
r is the maximal radius of inclusion disks, see the Refs. [17,18,1], [4, pp. 96–106], [19]. Moreover, possible calculation with
circular disks, for example {H(zi); δH,i} and {N(zi); δN,i} instead of H(zi) and N(zi) respectively, would make unnecessary
complications since we have no information on the value of the ‘‘radii’’ (errors) δH,i and δN,i. On the other hand, inclusion
disks are naturally defined by their radii. Fortunately, we need not artificial radii/errors, which is confirmed in practice in
many papers on the topic. For the above-mentioned reasons, in this paper we proceed as the authors of existing papers did
(see the book [4] and references cited there) and calculate scalar quantities in floating-point methods of sufficiently high
precision. Such approach gives more efficient methods, preserves order of convergence and inclusion property; this facts
are confirmed in practice. Consequently, Table 2 of basic operations deals with scalar quantities P, P ′, P ′′,N,H, V , etc., not
with corresponding circular disks.

4. Convergence analysis of the improved method

In this section we give the convergence analysis of the interval method (9) with the two-point correction (12). For
simplicity, we omit the iteration index m and denote all quantities at the (m + 1)-st iteration with symbol. To estimate
the order of convergence of the iterative method we introduce the errors

εi = zi − ζi (i ∈ In).
It is assumed that εi = OM(εj) for any pair i, j ∈ In. The symbol OM points to the fact that two real or complex numbers ω1
and ω2 have moduli of the same order (that is, |ω1| = O(|ω2|)). For brevity, we will write


j≠i instead of

n
j=1
j≠i

.

We require assertions of the following two lemmas.

Lemma 4.1. Let f (x) be a sufficiently differentiable function in a neighborhood of a simple zeroα of f . Iteration functionx = Φ(x)
defined with

y = x − H(x),

x = y −
f (y)
h′

3(y)
,

(13)

is of order six, where h3(t) is Hermite’s interpolating polynomial of third degree satisfying the conditions

h3(x) = f (x), h′

3(x) = f ′(x), h′′

3(x) = f ′′(x), h3(y) = f (y).

Proof. Let us introduce the following notation

e = x − α, ey = y − α, e =x − α.
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Since the first step of (13) represents a third order Halley’s iteration, we have ey = OM

e3

. Based on Cauchy’s theorem, a

remainder relation for Hermite’s interpolation states

f (t) − h3(t) =
f (4)(ξ)

4!
(t − x)3(t − y), ξ ∈ I(t, x, y), (14)

where I(t, x, y) denotes the smallest interval containing points t, x, y. When t, x and y are chosen close to α this implies for
ξ as well. After differentiating (14) and taking t = y, we obtain

f ′(y) − h′

3(y) =
f (4)(ξ)

4!
(y − x)3 =

f (4)(α) + OM(ξ − α)

4!
(ey − e)3 = OM(e3)

because of (ey − e)3 = (OM(e3) − e)3 = OM(e3). Since α is a simple zero of f , there exists a neighborhood of α such that
f ′(y) ≠ 0, therefore f ′(y) = OM(1), thus we have

h′

3(y) = f ′(y)

1 + OM(e3)


. (15)

By means of Taylor’s expansion of the function f in the neighborhood of the sought zero α and using (15) it follows

x = y −
f (y)
h′

3(y)
= y −

f (y)
f ′(y)


1 + OM(e3)


= y − N(y) + OM(f (y)e3).

Since f (y) = f ′(α)ey +
f ′′(α)

2 e2y + · · · = OM(ey) = OM(e3), and from the well known error relation of Newton’s method
y − N(y) − α = OM(e2y), we have

e = OM(e2y) + OM

eye3


= OM


e6

. �

In the sequel we will use the following abbreviations:

ε = max
1≤i≤n

|εi|, r = max
1≤i≤n

ri, δk,i =

n
j=1

1
(zi − ζj)k

(k = 1, 2).

Then the inclusion method (9) takes the form

Z (m+1)
i = z(m)

i −
2δ(m)

1,i
δ

(m)
1,i

2
− S 2

1,i(Z
(m)
C , Z (m)

C ) + δ
(m)
2,i − S2,i(Z

(m)
C , Z (m)

C )
(i ∈ In), (16)

where

N(ζi)
−1

= δ1,i, H(ζi)
−1

=
1
2
(δ2

1,i + δ2,i)/δ1,i.

Lemma 4.2. Let r = o

mini,j |ζi − ζj|


. Then for the inclusion method (16), with the two-point correction (10), the following

relations are true:

(i) r = OM

ε3r

;

(ii) ε = OM

ε9

.

Proof. Let Zj = {zj; rj}, Cj = C(zj) and zi−Zj+Cj = {ηij; rj}, where ηij = zi−Φ(zj) andΦ(zj) is defined in (13) of Lemma 4.1.
First, let us examine the difference

σ1,i − S1,i =


j≠i

1
zi − ζj

−


j≠i

1
{ηij; rj}

=


j≠i

1
zi − ζj

−


j≠i

 1
ηij

;
rj

|ηij|(|ηij| − rj)


=


j≠i


ζj − Φ(zj)
(zi − ζj)ηij

;
rj

|ηij|(|ηij| − rj)


= {ui; ρi}.

Since ζj−Φ(zj) = OM(ε6
j ) (see Lemma4.1), ηij = OM(1) and zi−ζj = OM(1) so thatwe obtain the following approximations

ui =

n
j=1
j≠i

ζj − Φ(zj)
(zi − ζj) ηij

= OM(ε6), (17)
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and

ρi =

n
j=1
j≠i

rj
|ηij|(|ηij| − rj)

= OM(r). (18)

The difference δ2
1,i − S 2

1,i is now given by

δ2
1,i − S 2

1,i =

 1
εi

+ σ1,i

2
− S 2

1,i =
1
ε2
i

+ 2
1
εi

σ1,i + (σ1,i − S1,i)(σ1,i + S1,i).

Using (17) and (18) and having in mind that σ1,i + S1,i = {OM(1); OM(r)}, we obtain the approximation

δ2
1,i − S 2

1,i =

 1
ε2
i

+ 2
1
εi

σ1,i + OM(ε6); OM(r)

. (19)

Similarly, the difference Ai = δ2,i − S2,i can be expressed in the form

Ai =
1
ε2
i

+


j≠i

1
(zi − ζj)2

−


j≠i

 1
{ηij; rj}

2
=

1
ε2
i

+


j≠i

1
(zi − ζj)2

−


j≠i

 1
ηij

;
rj

|ηij|(|ηij| − rj)

2
=

1
ε2
i

+


j≠i

1
(zi − ζj)2

−


j≠i

 1
η2
ij
;

2rj
|ηij|

2(|ηij| − rj)
+

r2j
|ηij|

2(|ηij| − rj)2


=

1
ε2
i

+


j≠i


ζj − Φ(zj)
(zi − ζj)ηij

 1
zi − ζj

+
1
ηij


;

2rj
|ηij|

2(|ηij| − rj)
+

r2j
|ηij|

2(|ηij| − rj)2


.

Since
1

zi − ζj
+

1
ηij

= OM(1),

we have, from (18) and (19),

δ2,i − S2,i =

 1
ε2
i

+ OM(ε6); OM(r)

. (20)

Using (19) and (20), from (16), we find

{εi;ri} = εi −
2


1
εi

+ σ1,i



2 1

ε2i
+ 2 1

εi
σ1,i + OM(ε6); OM(r)

 . (21)

According to (21) we obtain

εi = εi −
2(εi + ε2

i σ1,i)

2 + 2εiσ1,i + OM(ε8)
=

OM(ε9)

2 + 2εiσ1,i + OM(ε8)
= OM(ε9)

and

ri =
2(ε3

i + ε4
i σ1,i)OM(r)

|2 + 2εiσ1,i + OM(ε8)| |2 + 2εiσ1,i + OM(ε2r)|
= OM(ε3r). �

The convergence analysis of inclusion methods (9) with the two-point correction (10) relies on the following assertion
which is a special case of Theorem 3 given in [20]:

Theorem 4.1. Given the error-recursion

v
(m+1)
i ≤ αi

k
j=1


v

(m)
j

tij
, (i ∈ Ik; m ≥ 0), (22)

where tij ≥ 0, αi > 0, 1 ≤ i, j ≤ k, and v
(m)
i = ε

(m)
i or v

(m)
i = r (m)

i . Denote the matrix of exponents appearing in (22) with
Tk, that is Tk = [tij]k×k. If the non-negative matrix Tk has the spectral radius ρ(Tk) > 1 and a corresponding eigenvector xρ > 0,
then all sequences {v

(m)
i } (i ∈ Ik) have the R-order at least ρ(Tk).
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The matrix Tk = [tij] will be called the R-matrix since it is directly associated with the R-order of convergence. Further,
let OR(IM, ζ) denote the R-order of convergence of an iterative method IM with the limit point ζ. For the inclusion method
(16) we can state the following theorem.

Theorem 4.2. If Z (0)
1 , . . . , Z (0)

n are sufficiently close initial approximations to the distinct zeros ζ1, . . . , ζn, then the lower bound
of the R-order of convergence of the interval method (16) is nine.
Proof. For simplicity, as quite common in this type of analysis, we adopt the relation 1 > |ε(0)

| = r (0) > 0,which represents
the ‘‘worst case’’ model. This assumption has no influence on the final result of the limit process which we apply in order
to obtain the lower bound for the R-order of convergence. By virtue of Lemma 4.2 we notice sequences behaving in the
following manner

ε(m+1)
∼

ε(m)

9
, r (m+1)

∼

ε(m)

3
r (m).

Based on these relations and with accordance to Theorem 4.1, we form the R-matrix

T2 =


9 0
3 1


with the spectral radius ρ(T2) = 9 and the corresponding eigenvector xρ = (8, 3) > 0. Hence, according to Theorem 4.1,
we obtain

OR((16), ζ) ≥ ρ (T2) = 9. �

5. Single-step methods

The convergence of the method (8), can be accelerated by applying the Gauss–Seidel approach. Thus, we use the already
calculated circular approximations in the same iteration. In this manner we obtain the single-step method

Z (m+1)
i = z(m)

i −
1

B (m)
i

, (i ∈ In) (23)

B (m)
i =


H(z(m)

i )
−1

−
1
2
N(z(m)

i )

S2
1,i(Z

(m+1), Z (m)) + S2,i(Z (m+1), Z (m))

.

The R-order of the method (23) is at least 3+ xn, where xn > 1 is the unique positive root of the equation xn − x− 3 = 0.
For the proof see [4].

Similarly, applying the same Gauss–Seidel procedure to the method (9) we obtain a single-step method

Z (m+1)
i = z(m)

i −
1

BC (m)
i

, (i ∈ In), (24)

BC (m)
i =


H(z(m)

i )
−1

−
1
2
N(z(m)

i )

S2
1,i(Z

(m+1), Z (m)
C ) + S2,i(Z (m+1), Z (m)

C )

.

The interval method (24) with correction C in the form of Newton’s and Halley’s iteration functions was examined in [3].
It was proved that OR((9)N) ∈ (5, 6.646) in the case of Newton’s correction and OR((9)H) ∈ (6, 7.855) when the Halley’s
correction was applied.

Let us examine now, the case when the correction C is the two-point correction involved in (10).
It is very difficult to find the R-order of convergence of the single step methods (24) for a general n. In order to do that,

one has to handle 2n mutually dependent sequences of centers and radii of produced disks, which is a very difficult task.
Also, the number of zeros n is involved as a parameter. However, we can estimate easily the limit bounds of the R-order
taking the limit cases n = 2 and very large n.

Since the convergence rate of a single-step method becomes almost the same to the one of the corresponding total-step
method when the polynomial degree is very large, we obtain

OR

(24)TPC , ζ


> OR((9)TPC , ζ) ≥ 9.

Consider now the single-step methods (24) for n = 2 and assume that |ε
(0)
1 | = |ε

(0)
2 | = r (0)

1 = r (0)
2 < 1 (the ‘‘worst case’’

model). After an extensive calculation we derive the following estimates:
|ε̂1| ∼ |ε1|

3
|ε2|

6, |ε̂2| ∼ |ε1|
3
|ε2|

9, r̂1 ∼ |ε1|
3r2, r̂2 ∼ |ε1|

3
|ε2|

3r2.
The corresponding R-matrices and their spectral radii along with the relevant eigenvector for the method (24) are

T4 =

3 6 0 0
3 9 0 0
3 0 0 1
3 3 0 1

 ,
ρ(T4) = 11.19615,
xρ = (1.436, 1.962, 0.474, 1.) > 0.

According to the previous results we can state the following assertion:
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Fig. 1. Ratios of the computational efficiency.

Theorem 5.1. The range of the lower bounds of the R-order of convergence of the single-step method (24) with the two-point
correction is

OR((24)TPC, ζ) ∈ (9, 11.196).

6. Computational aspects

In this section we compute computational efficiency of the Halley-like method (8), and the Halley-like method with
Newton’s correction (9)N , Halley’s correction (9)H and the two-point correction (9)TPC .

The efficiency of an iterative method (IM) can be estimated by the efficiency index

E(IM) =
log r
d

, (25)

where r is the R-order of convergence of the iterative method (IM) and d is its computational cost (see [4,8,21]). We
emphasize that the rank list of methods obtained by formula (25) mainly well matches the real CPU time.

To obtain computational cost dwewill use the number of arithmetic operations per iteration taken with certain weights
depending on the execution time of operations

d = wasAS + wmM + wdD + wrR,

where AS,M , D and R are the number of additions+subtractions, multiplications, divisions and extractions of a root and was,
wm, wd and wr are corresponding weights.

Weights was, wm, wd and wr in (25) are determined according to the estimation of the complexity of the basic operations
in multiple-precision arithmetic. We assume that the floating point number representation is used with a binary fraction
of b bits. According to the results given in [22] the execution time for additions and subtractions tAS is O(b). Using
Schönhage–Strassen multiplication we obtain that the execution time for multiplication tm is O(b log b log log b). For
division, it is scaled by td = 3.5tm, while for the extraction of a root we have tr = 4tm. We chose the weights was, wm,
wd and wr to be proportional to tAS(b), tm(b), td(b) and tr(b) for a 128-bit architecture (b = 128).

Complex polynomials Pn with real or complex zeros are considered. The number of basic complex operations is reduced
to the number of operations in real arithmetic. The obtained values, as functions of the polynomial degree n, are given in
Table 2.

Applying (25) and data from Table 2 we calculated the percent ratios

ρ

(9)TPC , (X)


(n) =


E

(9)TPC , n


E(X, n)

− 1


· 100 (in %),

where (X) is one of the methods (8), (9)N and (9)H . The ratios ρ

(9)TPC , (X)


(n) present the increase of computational

efficiency of the inclusion method (9)TPC in the relation to the methods (8), (9)N and (9)H . These relations are graphically
presented in Fig. 1 as functions of the polynomial degree n, where the ratio ρ


(9)TPC , (8)


(n) is displayed by full line, the

ratio ρ

(9)TPC , (9)N


(n) by dotted line, while the ratio ρ


(9)TPC , (9)H


(n) is displayed by dot-dashed line.

From Fig. 1 we can observe that the interval method (9)TPC is the most efficient. The obtained percentage improvement
depends on the weights was, wm, wd and wr in (25). Different choice of weights gives slightly different outcomes, but the
average ratios of computational efficiency of the considered methods lead to the same conclusion.

The presented total step methods (8), (9)N , (9)H and (9)TPC and single step methods (23), (24)N , (24)H and (24)TPC have
been tested in solving many polynomial equations. To provide the enclosure of the zeros in the fourth and fifth iteration
that produce very small disks, we used the programming package Mathematica with multi-precision arithmetic.
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Table 3
Radii of total step methods.

r (1) r (2) r (3) r (4) r (5) COC (5)

(8) 7.62(−2) 2.21(−7) 1.11(−32) 9.07(−134) 2.79(−538) 4.0016
(9)N 6.14(−2) 4.70(−9) 3.15(−44) 1.49(−219) 8.15(−1096) 4.9979
(9)H 6.22(−2) 6.29(−11) 1.62(−64) 1.17(−385) 3.30(−2311) 5.9960
(9)TPC 6.20(−2) 3.88(−14) 3.17(−123) 5.43(−1107) 9.63(−9963) 9.0019

Table 4
Radii of single step methods.

r (1) r (2) r (3) r (4) r (5) COC (5)

(23) 1.52(−2) 1.47(−10) 1.81(−43) 6.45(−178) 1.51(−718) 4.0211
(24)N 1.74(−2) 7.35(−10) 1.29(−49) 1.63(−255) 5.89(−1325) 5.1940
(24)H 1.57(−2) 9.62(−12) 1.03(−71) 6.51(−449) 2.97(−2731) 6.0508
(24)TPC 1.57(−2) 6.03(−15) 7.61(−131) 5.73(−1179) 1.12(−10638) 9.0254

It is of interest to check the convergence rate of the proposed interval methods in practical implementation and compare
it to the theoretical order given in the presented convergence theorems. For this reason, we calculated the so-called
computational order of convergence, briefly denoted by COC (m), for the m-the iteration:

COC (m)
=

log

r (m)/r (m−1)


log

r (m−1)/r (m−2)

 , (26)

where, as above, r (m) is the maximal radii of inclusion disks produced at the m-th iteration. The values of COC (m) are given
in the last columns of the tables presented below.

Remark 6.1. Formula (26) is an adaptation of a Jay’s formula presented in [23], which gives good results if the accuracies of
root approximations are of the same order. If approximations are not of same quality (for example, in the case of single-step
methods), then a certain difference between the computational order of convergence and the theoretical order can appear,
but usually to acceptable extent from a practical point of view.

Example 1. To find the circular inclusion approximations to the zeros of the polynomial

P(z) = z9 + 3z8 − 3z7 − 9z6 + 3z5 + 9z4 + 99z3 + 297z2 − 100z − 300,

we implemented the interval methods (8), (9) (with Newton’s, Halley’s and two point correction), (23) and (24) (with
Newton’s, Halley’s and two point correction). The exact zeros of P are ζ1 = −3, ζ2,3 = ±1, ζ4,5 = ±2i, ζ6,7 =

−2 ± i, ζ8,9 = 2 ± i. The initial disks were selected to be Z (0)
i =


z(0)
i ; 0.3


, with the centers

z(0)
1 = −3.1 + 0.2i, z(0)

2 = −1.2 − 0.1i, z(0)
3 = 1.2 + 0.1i,

z(0)
4 = 0.2 − 2.1i, z(0)

5 = 0.2 + 1.9i, z(0)
6 = −1.8 + 1.1i,

z(0)
7 = −1.8 − 0.9i, z(0)

8 = 2.1 + 1.1i, z(0)
9 = 1.8 − 0.9i.

The maximal radii of the inclusion disks produced in the first five iterative steps, are given in Tables 3 and 4, where the
denotation A(−q) means A × 10−q.

Example 2. We have applied the same inclusionmethods in order to find the circular inclusion approximations to the zeros
of the polynomial

P(z) = z20 + 12z19 + 80z18 + 360z17 + 1356z16 + 4512z15 + 13 440z1435 520z13 + 84 976z12 + 192 192z11

+ 416 000z10 + 574 080z9 − 153 024z8 − 3 283 968z7 − 8 048 640z6 − 15 452 160z5

− 20 317 184z4 − 15 925 248z3 − 38 010 880z2 − 68 812 800z − 73 728 000.

The exact zeros of P are ζ1,2 = 1 ± i, ζ3,4 = 1 ± 3i, ζ5,6 = 2 ± 2i, ζ7,8 = ±2, ζ9,10 = ±2i, ζ11,12 = −1 ± i, ζ13,14 =

−1 ± 3i, ζ15,16 = −2 ± 2i, ζ17,18 = −3 ± i, ζ19,20 = −3 ± 3i. The initial disks were selected to be Z (0)
i =


z(0)
i ; 0.3


, with

the centers

z(0)
1 = 0.9 + 1.2i, z(0)

2 = 0.8 − 1.1i, z(0)
3 = 0.9 + 2.9i,

z(0)
4 = 1.2 − 3.1i, z(0)

5 = 2.2 + 2.1i, z(0)
6 = 2.1 − 2.2i,

z(0)
7 = −1.8 + 0.1i, z(0)

8 = 1.9 − 0.1i, z(0)
9 = −0.1 + 2.2i,
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Table 5
Radii of total step methods.

r (1) r (2) r (3) r (4) r (5) COC (5)

(8) 1.21(−1) 6.62(−7) 1.87(−29) 4.78(−125) 7.62(−506) 3.9836
(9)N 1.32(−1) 2.65(−7) 1.37(−37) 1.55(−188) 5.93(−941) 4.9847
(9)H 1.24(−1) 3.00(−9) 1.50(−56) 3.21(−338) 1.12(−2026) 5.9945
(9)TPC 1.28(−1) 3.77(−10) 6.91(−87) 2.51(−773) 3.89(−6952) 9.0012

Table 6
Radii of single step methods.

r (1) r (2) r (3) r (4) r (5) COC (5)

(23) 1.11(−1) 9.37(−8) 5.48(−33) 8.07(−135) 1.65(−546) 4.0428
(24)N 1.11(−1) 2.76(−8) 5.26(−42) 9.38(−212) 4.83(−1067) 5.0386
(24)H 1.06(−1) 6.28(−10) 5.80(−61) 3.61(−367) 6.02(−2217) 6.0410
(24)TPC 1.09(−1) 2.39(−11) 1.48(−95) 3.33(−826) 3.33(−7434) 9.0440

Table 7
Radii of total step methods.

r (1) r (2) r (3) r (4) r (5) COC (5)

(8) 7.96(−2) 1.19(−6) 5.16(−29) 2.02(−119) 8.37(−485) 4.0416
(9)N 1.14(−1) 3.78(−7) 1.50(−35) 7.35(−178) 1.01(−887) 4.9882
(9)H 1.17(−1) 2.65(−8) 8.60(−53) 5.79(−317) 3.36(−1900) 5.9932
(9)TPC 1.07(−1) 2.60(−8) 1.11(−72) 4.33(−648) 1.86(−5820) 8.9890

z(0)
10 = 0.2 − 1.9i, z(0)

11 = −0.8 + 1.1i, z(0)
12 = −1.1 − 1.2i,

z(0)
13 = −0.9 + 2.9i, z(0)

14 = −0.9 − 2.9i, z(0)
15 = −2.1 + 2.2i,

z(0)
16 = −2.2 − 2.1i, z(0)

17 = −2.9 + 1.2i, z(0)
18 = −2.9 − 1.1i,

z(0)
19 = −2.9 + 2.9i, z(0)

20 = −2.9 − 2.9i.

The maximal radii of the inclusion disks produced in the first five iterative steps, are given in Tables 5 and 6.

Example 3. We have applied the same inclusionmethods in order to find the circular inclusion approximations to the zeros
of the polynomial

P(z) = z25 − 15z24 + 87z23 − 231z22 + 398z21 − 2904z20 + 20 472z19 − 66 816z18 + 52 918z17 + 403 206z16

− 1 763 478z15 + 1 980 534z14 + 12 830 648z13 − 76 002 444z12 + 202 129 932z11 − 356 907 996z10

+ 523 871 353z9 − 342 789 039z8 − 1 845 963 753z7 + 8 666 158 809z6 − 17 149 936 318z5

+ 14 381 171 196z4 + 1 645 576 740z3 − 8 311 164 300z2 + 16 613 181 000z − 13 962 780 000.

The exact zeros of P are ζ1,2 = ±1, ζ3,4 = ±i, ζ5,6 = 1 ± 2i, ζ7,8 = −1 ± 2i, ζ9,10 = 2 ± i, ζ11,12 = −3 ± i, ζ13,14 =

±3i, ζ15 = 3, ζ16 = −2, ζ17,18 = 3± 2i, ζ19,20 = 4± i, ζ21,22 = 2± 3i, ζ23,24 = −3± 3i, ζ25 = 4. The initial disks were
selected to be Z (0)

i =

z(0)
i ; 0.3


, with the centers

z(0)
1 = 1.1 + 0.2i, z(0)

2 = −1.2 − 0.1i, z(0)
3 = 0.2 + 1.1i,

z(0)
4 = −0.2 − 1.1i, z(0)

5 = 1.2 + 2.1i, z(0)
6 = 1.1 − 2.1i,

z(0)
7 = −1.2 + 1.9i, z(0)

8 = −1.2 − 1.9i, z(0)
9 = 2.1 + 1.2i,

z(0)
10 = 2.2 − 1.1i, z(0)

11 = −3.2 + 1.1i, z(0)
12 = −3.2 − 1.1i,

z(0)
13 = 0.1 + 2.9i, z(0)

14 = 0.1 − 2.9i, z(0)
15 = 2.9 + 0.1i,

z(0)
16 = −2.2 − 0.1i, z(0)

17 = 2.9 + 2.1i, z(0)
18 = 3.2 − 2.1i,

z(0)
19 = 3.9 + 1.1i, z(0)

20 = 3.9 − 1.1i, z(0)
21 = 2.2 + 2.9i,

z(0)
22 = 2.1 − 3.1i, z(0)

23 = −3.2 + 2.9i, z(0)
24 = −3.2 − 2.9i,

z(0)
25 = 3.9 − 0.1i.

The maximal radii of the inclusion disks produced in the first five iterative steps, are given in Tables 7 and 8.
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Table 8
Radii of single step methods.

r (1) r (2) r (3) r (4) r (5) COC (5)

(23) 4.80(−2) 6.80(−8) 1.52(−35) 1.82(−148) 2.73(−598) 3.9835
(24)N 6.14(−2) 3.73(−8) 2.32(−42) 1.62(−216) 3.73(−1095) 5.0451
(24)H 6.90(−2) 4.35(−9) 1.96(−55) 4.30(−330) 3.18(−1999) 6.0771
(24)TPC 6.96(−2) 5.78(−9) 3.33(−74) 4.24(−658) 9.16(−6003) 9.1535

It is evident from Tables 3–8 and a number of tested polynomial equations that the presented methods behave very fast
convergence. Among them we observe that the method (9)TPC and its single-step variant (24)TPC are the most efficient.

From the last columns of Tables 3–8we can conclude that obtained computational order of convergence for the proposed
methods (8), (9)N , (9)H , (9)TPC , (23), (24)N , (24)H and (24)TPC well coincides with the theoretical order of convergence. This
conclusion especially holds for the total-stepmethods (Tables 3, 5 and 7). The computational order of convergence of single-
step methods (Tables 4, 6 and 8) gives relatively good agreement with the theoretical order, acceptable for a practical
purpose. Some deviations happened due to the impossibility of precise description of approximations of different accuracy,
which has been stressed in Remark 6.1. Actually, the computational order of a single-stepmethod is close to the order of the
corresponding total-step method, which could be expected since the formula (26) follows disks of maximal radii. However,
the user can get a good estimate of convergence rate, most frequently acceptable for practical purpose.
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