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a b s t r a c t

A new iterative method for the simultaneous determination of simple zeros of algebraic
polynomials is stated. This method is more efficient compared to the all existing
simultaneousmethods based on fixed point relations. A very high computational efficiency
is obtained using suitable corrections resulting from the Kung–Traub three-step method
of low computational complexity. The presented convergence analysis shows that the
convergence rate of the basic third order method is increased from 3 to 10 using this
special type of corrections and applying 2n additional polynomial evaluations per iteration.
Some computational aspects and numerical examples are given to demonstrate a very fast
convergence and high computational efficiency of the proposed zero-finding method.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The aim of this paper is to construct an iterative method for the simultaneous determination of simple polynomial roots
with a very high computational efficiency. The proposed method is ranked as the most efficient among existing methods
in the class of simultaneous methods for approximating polynomial roots based on fixed point relations. The presented
iterative formula relies on the fixed point relation of Gargantini–Henrici type [1]. A high computational efficiency is attained
by employing suitable corrections which enable very fast convergence (equal to ten) with minimal computational costs. In
fact, these corrections arise from the Kung–Traub three-point method [2].

2. Accelerated methods

Let f (z) =
n

j=1(z − ζj) be a monic polynomial of degree nwith simple real or complex zeros ζ1, . . . , ζn and let

u(z) =
f (z)
f ′(z)

=


d
dz

log f (z)
−1

=


n

j=1

1
z − ζj

−1

(1)

be Newton’s correction appearing in the quadratically convergent Newton method. To construct an iterative method for
the simultaneous inclusion of polynomial zeros, Gargantini and Henrici [1] started from (1) and derived the following fixed
point relation

ζi = z −


1

u(z)
−


j∈In\{i}

1
z − ζj

−1

(i ∈ In := {1, . . . , n}). (2)
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Let z1, . . . , zn be distinct approximations to the zeros ζ1, . . . , ζn. Setting z = zi and substituting the zeros ζj by some
approximations z∗

j in (2), the iterative method

ẑi = zi −


1

u(zi)
−


j∈In\{i}

1
zi − z∗

j

−1

(i ∈ In) (3)

for the simultaneous determination of all simple zeros of the polynomial f is obtained. The choice z∗

j = zj in (3) gives the
well-known cubically convergent Ehrlich–Aberth method [3,4]

ẑi = zi −


1

u(zi)
−


j∈In\{i}

1
zi − zj

−1

(i ∈ In). (4)

Comparing (2) and (3) it is evident that the better approximations z∗

j give themore accurate approximations ẑi; indeed, if
z∗

j → ζj, then ẑi → ζi. This idea was employed by Nourein in [5] for the construction of the following fourth-order method
by using the Newton approximations z∗

j = zj − u(zj) in (3):

ẑi = zi −


1

u(zi)
−


j∈In\{i}

1
zi − zj + u(zj)

−1

(i ∈ In). (5)

In this paper we will prove that further increase of computational efficiency can be achieved by combining a suitable
three-point method. More details about multipoint methods may be found in [6,7]. In fact, we construct a tenth-order
simultaneous method of the form (3) using 2n additional polynomial evaluations. These additional evaluations provide a
huge increase of the order of convergence from 3 (method (4)) to the incredible 10.

Let f be a function with an isolated zero ζ and let xm be its approximation obtained at the mth iterative step. To achieve
a very fast convergence of the method (3), we will apply a special case of the Kung–Traub family of multipoint methods of
arbitrary order of convergence [2], given through the following three steps:

ym = xm −
f (xm)

f ′(xm)
= xm − u(xm), vm = ym −

f (xm)f (ym)u(xm)
f (xm) − f (ym)

2 ,

xm+1 = K(xm) := vm −
(ym − vm)f (vm)u(xm)

f (xm) − f (vm)
2 

f (ym) +
f (xm)2

f (ym) − f (vm)


.

(6)

For simplicity, the three-point Kung–Traub iteration (6) is denoted as xm+1 = K(xm).
Now we can construct a new simultaneous method taking the Kung–Traub approximations z∗

j = K(zj) (given by (6))
in (3). If z(0)

1 , . . . , z(0)
n are initial approximations to the polynomial zeros ζ1, . . . , ζn, then the new simultaneous method is

defined by the iterative formula

z(m+1)
i = z(m)

i −


1

u(z(m)
i )

−


j∈In\{i}

1

z(m)
i − K


z(m)
j

−1

, (i ∈ In, m = 0, 1, . . .). (7)

Remark 1. To decrease the total computational cost, before executing an iteration step it is first necessary to calculate all
entries K


z(m)
j


.

3. Convergence analysis

The following theorem deals with the order of convergence of the simultaneous method (7).

Theorem 1. Assume that initial approximations z(0)
1 , . . . , z(0)

n are sufficiently close to the distinct zeros ζ1, . . . , ζn of the
polynomial f . Then the order of convergence of the simultaneous method (7) is 10.

Proof. For simplicity, we omit the iteration indexm and denote all quantities at the (m + 1)th iteration with the symbol.
Let us introduce the errors εj = zj − ζj, ε̂j = ẑj − ζj, and let

z∗

j = K(zj), λij = zi − K(zj), θi =


j∈In\{i}

K(zj) − ζj

(zi − ζj)λij
.

Then, starting from (7) and using (1) we obtain

ẑi = zi −


1
εi

+


j∈In\{i}

1
zi − ζj

−


j∈In\{i}

1
λij

−1

= zi −
εi

1 − εiθi
,
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and hence

ε̂i = ẑi − ζi = εi −
εi

1 − εiθi
=

−ε2
i θi

1 − εiθi
. (8)

According to the conditions of Theorem 1, we can assume that εi = OM(εj) for any pair i, j; let ε ∈ {ε1, . . . , εn} be the
error of the maximal modulus. Here OM is the symbol which points to the fact that two complex numbers w1 and w2 have
moduli of the same order (that is, |w1| = O(|w2|), O is the Landau symbol), written as w1 = OM(w2).

The order of convergence of the three-point method (6) is eight, that is, the following relation is valid

K(zj) − ζj = O(ε8
j ). (9)

See [2] for the proof. According to (9), we have θi = OM(ε8) and from (8) we find

ε̂ = OM(ε10),

which means that the order of convergence of the method (7) is 10. �

Remark 2. Exceptional acceleration of the order of convergence from 3 (the Ehrlich–Aberth method (4)) to 10 (the
new method (7)) is attained using 2n additional evaluations of the polynomial f per iteration. As a consequence, the
computational efficiency of the method (7) is increased, as shown in Section 4.

Let ζ =

ζ1, . . . , ζn


and z(0)

=

z(0)
1 , . . . , z(0)

n

be the vectors of simple polynomial zeros and distinct initial

approximations to these zeros, respectively. One of the most interesting and challenging problems in studying iterative
root-finding methods is to get a ball of convergence B(ζ,R) with center ζ and radius R such that the implemented method
converges starting from any initial point z(0) belonging to B(ζ,R). A ball of convergence has been found for some relatively
simple one-point methods for solving scalar equations of the form f (x) = 0 as well as systems of equations of Newton’s and
secant type, see [8] and references cited therein. In the case of n-pointmethods for scalar equations a ball of convergence has
not been considered in the literature for n ≥ 3 due to their very complicated structure. For this reason, the determination
of a ball of convergence for the proposed method (7), involving the three-point method (6), also appears as a very difficult
task.

Let {c; r} := {z : |z − c| ≤ r} denote a disk in the complex plane with center c and radius r . We consider a ball of
convergence for an iterativemethod (IM) for the simultaneous determination of all n simple zeros ζ1, . . . , ζn of a polynomial
f of degree n. In general, the major problem in finding a ball of convergence of the form B(ζ,R) = ({ζ1, R1}, . . . , {ζn; Rn})
for the simultaneous methods for polynomial zeros is to state computationally verifiable conditions which guarantee the
convergence starting with z(0)

∈ B(ζ,R). Designing such a procedure is a very difficult task even for simple iterative
methods. This fact has forced numerical analysts, beginning from the 1970s, to search for inclusion disks of the form {zi; Ri},
centered at suitable approximations to the zeros, instead of {ζi; Ri}. Here we present the following useful result:

Theorem 2. For n ≥ 3 let Wi = f (zi)/


j∈In\{i}(zi − zj) and ηi = zi − Wi. If the inequality

max
1≤i≤n

|Wi| <
1
2n

min
1≤i,j≤n

j≠i

|zi − zj| (10)

holds, then the disks

D1 := {η1; |W1|} , . . . ,Dn := {ηn; |Wn|}

are mutually disjoint and each of them contains one and only one zero of f .

The proof of this assertion follows according to the study given in [9, pp. 28–31].
It remains to state convergence conditions for the guaranteed convergencewhich deal with the disksD1, . . . ,Dn. For this

purpose we use Smale’s point estimation theory based on estimates in one point. This approach, introduced in [10,11], deals
with the computationally verifiable domain of convergence. Following Smale’s idea, point estimation theory for iterative
methods for the simultaneous determination of simple polynomial zeros was developed in the book [9]. We briefly present
this estimation procedure at an initial point.

Let z(0)
1 , . . . , z(0)

n be components of the vector of initial approximations z(0) and let

W (0)
i = f (z(0)

i )

 
j∈In\{i}


z(0)
i − z(0)

j


(i ∈ In).

Following the result for the Ehrlich–Aberthmethod (5)withNewton’s corrections, given in [9, pp. 102–111], the newmethod
with Kung–Traub corrections (6) will converge under the following initial condition:

max
1≤i≤n

|W (0)
i | < cn · min

1≤i,j≤n
j≠i

z(0)
i − z(0)

j

, (11)
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where cn = 1/(αn) < 1/(2n) (α > 2) is a constant that depends only on the polynomial degree n. Condition (11) is actually
condition (10) with the constant cn instead of 1/(2n). Since cn < 1/(2n), then the convergence condition (11) also provides
the construction of non-overlapping disks D1, . . . ,Dn defined in Theorem 2. Let us emphasize that the initial condition
(11) is computationally verifiable since it depends only on available data (initial approximations and coefficients of a given
polynomial), which is of practical importance.

According to the values of cn for the Ehrlich–Aberth method (4) (see [9, pp. 99–105]) and the Ehrlich–Aberth method
with Newton’s corrections (5) (see [9, pp. 105–111]), we may expect that α (appearing in the bound of cn) belongs to the
interval [2.5, 4]. However, the convergence analysis of the new method (7) is considerably more complicated than that of
the methods (4) and (5) so that the determination of a sharp bound of cn (that is, as small as possible parameter α) requires
a laborious and very lengthy study. For this reason, this subject will be considered in a future work.

4. Computational aspects

In this section we compare the convergence behavior and computational efficiency of the Ehrlich–Aberth method (4),
the Nourein method (5), the new simultaneous method (7), and two combined methods of order 10. The knowledge of
the computational efficiency is of particular interest in designing a package of root-solvers. This comparison procedure is
entirely justified since the analysis of efficiency given in [12, Chapter 6] for several computing machines showed that the
Nourein method (5) has the highest computational efficiency in the class of simultaneous methods based on fixed point
relations.

As presented in [13, Chapter 1], [12, Chapter 6] and [6, Chapter 1], the efficiency of an iterative method (IM) can be
successfully estimated using the efficiency index given by

E(IM) =
log r
d

, (12)

where r is the R-order of convergence of the iterativemethod (IM), and d is the computational cost. The rank list of methods
obtained by this formula mainly matches well a real CPU (central processor unit) time.

In order to evaluate the computation cost d it is preferable to use arithmetic operations per iteration taken with certain
weightsdepending on the execution times of operations. Denote theseweightswithwas, wm andwd for addition/subtraction,
multiplication, and division, respectively. Let ASn, Mn and Dn be the number of additions+subtractions, multiplications and
divisions per iteration for all n zeros of a given polynomial of degree n. Then the computational cost d can be (approximately)
expressed as

d = d(n) = wasAS(n) + wmMn + wdDn (13)

and from (12) and (13) we obtain

E(IM, n) =
log r

wasAS(n) + wmMn + wdDn
. (14)

Introduce the abbreviations

A2,i =
f ′′(zi)
2f ′(zi)

, ui =
f (zi)
f ′(zi)

, Sk,i =


j∈In\{i}

1
(zi − zj + uj)k

(k = 1, 2), hi =


f ′(zi)
f (zi)

−
f ′′(zi)
2f ′(zi)

−1

.

In our numerical experiments we tested the simultaneous methods (4), (5), (7) and two combined methods of order 10.
Namely, to the authors knowledge, there are no other simultaneous methods of order 10 apart from the new method (7).
For this reason, in an artificial way we have constructed two methods of order 10 by combining Newton’s method of order
two and two simultaneous methods of order five given below.

Wang–Wu method [14]:

ẑi = zi −

1
hi

−
ui

2


S21,i + S2,i

−1

(i ∈ In). (15)

Farmer–Loizou-like method [15]:

ẑi = zi −
ui(1 − uiA2,i)

1 − 2uiA2,i + (u2
i /2)(A

2
2,i − S2,i)

(i ∈ In). (16)

We construct two combined methods, referred to as N–W–W and N–F–L, and execute one iteration through two steps:

1◦ Starting with approximations z1, . . . , zn, apply Newton’ method to obtain approximations y1, . . . , yn.
2◦ Continue the iterative process employing either method (15) or (16) dealing with y1, . . . , yn.

The order of convergence of the combined methods N–W–W and N–F–L is 2 · 5 = 10.
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Table 1
The number of basic operations.

Methods An + Sn Mn Dn

The Ehrlich–Aberth method (4) 14n2
+ O(n) 10n2

+ O(n) 2n2
+ O(n)

The Nourein method (5) 14n2
+ O(n) 10n2

+ O(n) 2n2
+ O(n)

The new method (7) 22n2
+ O(n) 18n2

+ O(n) 2n2
+ O(n)

Combined N–W–W method 29n2
+ O(n) 26n2

+ O(n) 2n2
+ O(n)

Combined N–F–L method 27n2
+ O(n) 26n2

+ O(n) 2n2
+ O(n)

Table 2
The (percent) dominance of computational efficiency of the new method (7).

(X) = (4) (X) = (5) (X) = (N–W–W) (X) = (N–F–L)

ρ((7), (X)) 41.6% 12.2% 32% 31%

We consider complex polynomials with real or complex zeros. The numbers of basic complex operations, reduced to
operations of real arithmetic, are given in Table 1 as functions of the polynomial degree n taking the dominant terms of
order O(n2).

To compare the simultaneousmethods (4), (5), (7), (N–W–W) and (N–F–L), we have used the weights (appearing in (14))
determined according to the estimation of complexity of basic operations in multiple-precision arithmetic. Without loss of
generality, we assume that floating-point number representation is used, with a binary fraction of b bits. In other words, we
deal with ‘‘precision b’’ numbers, giving results with a relative error of approximately 2−b. Following results given in [16], the
execution time tb(A) and tb(S) of addition and subtraction is O(b). Using Schönhage–Strassen multiplication (see [16]), we
have tb(M) = O


b log b log log b


and tb(D) = 3.5tb(M). We chose theweightswas, wm andwd proportional to tb(A), tb(M)

and tb(D), respectively, for a 128-bit architecture.
Applying (14) and data given in Table 1, we calculated the percent ratios

ρ((7), (X)) =


E((7))
E((X))

− 1


· 100 (in %),

where (X) is one of the methods (4), (5), (N–W–W), (N–F–L). The entries of ρ are given in Table 2. Note that very similar
values are obtained using theweights proportional to the processor execution times of basic operations for octuple precision
(machine epsilon 10−67) for a Pentium M 2.8 GHz running Fedora core 3 and an Opteron 64-bit processor (data taken
from [17]).

It is evident from Table 2 that the new method (7) is more efficient than the tested methods (4), (5), (N–W–W) and
(N–F–L). The dominant efficiency (about 30%) of method (7) in regard to (N–W–W) and (N–F–L) is expected since the latter
methods require additional n polynomial evaluations. Having in mind the mentioned fact on the dominant efficiency of the
Nourein method, it follows that the proposed simultaneous method (7) is the most efficient method for the simultaneous
determination of polynomial zeros in the class of methods based on fixed point relations.

To demonstrate the convergence behavior of the methods (4), (5), (7), (N–W–W) and (N–F–L), we have tested a number
of polynomial equations implementing the computational software packageMathematica. For illustration, among a number
of tested algebraic polynomials we have selected one numerical example. As a measure of accuracy of the obtained
approximations, we have calculated Euclid’s norm

e(m)
:= ∥z(m)

− ζ∥2 =


n

i=1

z(m)
i − ζi

21/2

(m = 0, 1, . . .). (17)

Example 1. We have applied the iterative methods (4), (5), (7), (N–W–W) and (N–F–L) for the simultaneous approximation
of the zeros of the polynomial of the 21st degree

f21(z) = (z − 4)(z2 − 1)(z4 − 16)(z2 + 9)(z2 + 16)(z2 + 2z + 5)(z2 + 2z + 2)
× (z2 − 2z + 2)(z2 − 4z + 5)(z2 − 2z + 10).

The following initial approximations were used, yielding e(0)
≈ 1.025:

z(0)
1 = 4.2 + 0.1i, z(0)

2 = −1.2 + 0.1i, z(0)
3 = 2.2 + 0.1i, z(0)

4 = −2.2 − 0.1i,

z(0)
5 = 0.2 + 2.1i, z(0)

6 = 0.2 − 2.1i,

z(0)
7 = 0.2 + 3.1i, z(0)

8 = 0.2 − 3.1i, z(0)
9 = −1.2 + 2.1i, z(0)

10 = −1.2 − 2.1i,

z(0)
11 = −1.2 + 1.1i, z(0)

12 = −1.2 − 1.1i,
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Table 3
Norm of approximation errors.

Methods e(1) e(2) e(3)

The Ehrlich–Aberth method (4) 8.76(−2) 1.03(−4) 2.16(−13)
The Nourein method (5) 4.61(−2) 5.74(−7) 1.26(−26)
The new method (7) 1.33(−2) 1.75(−17) 7.09(−166)
Combined N–W–Wmethod 3.24(−3) 1.05(−23) 1.17(−228)
Combined N–F–L method 1.21(−2) 6.18(−16) 2.57(−148)

z(0)
13 = 1.2 + 1.1i, z(0)

14 = 1.2 − 1.1i, z(0)
15 = 2.2 + 1.1i, z(0)

16 = 2.2 − 1.1i,

z(0)
17 = 1.2 + 3.1i, z(0)

18 = 1.2 − 3.1i,

z(0)
19 = 0.2 + 4.1i, z(0)

20 = 0.2 − 4.1i, z(0)
21 = 1.1 + 0.2i.

The errors e(m) calculated by (17) are given in Table 3, where the notation A(−h) means A × 10−h.
From Table 3 and a number of tested polynomial equations we can conclude that the proposed method (7) produces

approximations of considerable accuracy; two iterative steps are usually sufficient in solving most practical problems
when initial approximations are reasonably good and polynomials are well conditioned. The third iteration is given only
to demonstrate very fast convergence and, most frequently, it is not needed for real-life problems.

In this concrete example the new method (7) gives more accurate approximations than the N–F–L method but is less
accurate compared to the N–W–W method. However, a lot of tested numerical examples showed that the mentioned
methods of order 10 produce approximations of approximately the same quality and that none of these methods is the
best for all the examples. On the other hand, from Table 2 it is evident that the proposed method (7) is considerably more
efficient (about 30%) than the combined methods N–W–W and N–F–L, which is its main advantage among the methods of
the same order of convergence.
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