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a b s t r a c t

A derivative free method for solving nonlinear equations of Steffensen’s type is presented.
Using a self-correcting parameter, calculated by using Newton’s interpolatory polynomial
of second degree, the R-order of convergence is increased from 2 to 3. This acceleration
of the convergence rate is attained without any additional function calculations, which
provides a very high computational efficiency of the proposed method. Another advantage
is the convenient fact that this method does not use derivatives. Numerical examples are
included to confirm the theoretical results and high computational efficiency.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The main principle in constructing iterative algorithms for solving nonlinear equations is to achieve as high as possible a
convergence rate with a fixed number of function evaluations per iteration. In this work we use a self-correcting parameter
to improve the quadratically convergent Steffensen-likemethod and itsmodificationwithmemory, both proposed by Traub
in [1]. This parameter is calculated in each iteration by employing available data from the current and the previous iteration
and so no additional computational cost is required. In this way we construct a new efficient methodwithmemory with the
R-order of convergence at least 3. The improved method is free of derivatives, which is another advantage.

Let α be a simple real zero of a real function f : D ⊂ R → R and let x0 be an initial approximation to α. In his book [1],
Traub considered the iterative function

Φ(x) = Φ(x, γ ) = x −
γ f (x)2

f (x + γ f (x)) − f (x)
(1)

where γ ≠ 0 is a real constant. Introducing u(x) = f (x)/f ′(x) and expanding the denominator in (1) in a geometrical series,
we arrive at the relation

Φ(x) − α = (1 + γ f ′(x))c2(x)u(x)2 + O(u(x)3). (2)

In particular, choosing x = α it follows that Φ(α) = α and Φ ′(α) = 0, which means that (1) defines at least a second-order
iteration according to the Schröder–Traub theorem [1, Theorem 2.2]. Note that γ = 1 gives the well-known method of
Steffensen [2]:

xk+1 = xk −
f (xk)2

f (xk + f (xk)) − f (xk)
(k = 0, 1, . . .).
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Taking γ = −1/f ′(x) and having in mind that f (x) = O(x − α), we conclude from (2) that

Φ(x) − α = O((x − α)3). (3)
For this particular choice of γ , from (1) we get the Newton-secant iterative method

xk+1 = xk −
u(xk)f (xk)

f (xk) − f (xk − u(xk))
(k = 0, 1, . . .) (4)

which is, according to (3), of third order. This iterative function was derived by Traub and can be regarded as a two-point
method. Note that (4) requires three function evaluations. Using the Ostrowski–Traub formula for the efficiency index of an
iterative method (IM):

E(IM) = r1/θ , (5)
where r is the order of (IM) and θ is the required number of function evaluations per iteration, we calculate E(4) = 31/3

≈

1.442. The third-order one-point methods with the highest computational efficiency, such as Halley’s method (23) and
Ostrowski’s method (24), possess the same efficiency index.

Regarding the construction of the two-point method (4) where the parameter γ is replaced by −1/f ′(x), a reasonable
question arises; can we increase the order of convergence of (1) dealing with some approximation f̄ ′(x) of f ′(x) and taking
γ = −1/f̄ ′(x)? This substitution must be cost-preserving, that is, γ should be calculated using only available information.

Traub [1] showed that Steffensen-like method (1) can be somewhat improved by the reuse of information from the
previous iteration. Approximating f ′ by the secant

f̄ ′(xk) =
f (xk) − f (xk−1)

xk − xk−1
, (6)

Traub proposed the following method with memory:
γ0 is given, γk = −

xk − xk−1

f (xk) − f (xk−1)
for k ≥ 1,

xk+1 = xk −
γkf (xk)2

f (xk + γkf (xk)) − f (xk)
,

(k = 0, 1, . . .) (7)

with theR-order of convergence at least 1+
√
2 ≈ 2.414. A similar approachwas applied to higher ordermultipointmethods

in [3,4].
In this work we show that the iterative method (7) can be additionally accelerated without increasing the computational

cost. Themain idea in constructing a higher ordermethod consists of the calculation of the parameter γ = γk as the iteration
proceeds using a better approximation to f ′(xk) related to (6).

2. The improved method with memory

Themain idea in constructing methods with memory consists of the calculation of the parameter γ = γk as the iteration
proceeds by using the formula γk = −1/f̄ ′(α) for k = 1, 2, . . . . It is assumed that an initial estimate γ0 should be chosen
before starting the iterative process—for example, using one of the ways proposed in [1, p. 186].

In our convergence analysis of the newmethod, we employ the notation used in Traub’s book [1]: if {gk} and {hk} are null
sequences and gk/hk → C, where C is a nonzero constant, we shall write gk = O(hk) or gk ∼ Chk.

We also use the concept of R-order of convergence introduced by Ortega and Rheinboldt [5]. Let {xk} be a sequence
of approximations generated by an iterative method (IM). If this sequence converges to a zero α of f with the R-order
OR((IM), α) ≥ r, we will write

εk+1 ∼ Ak,rε
r
k, (8)

where Ak,r tends to the asymptotic error constant Ar of the iterative method (IM) when k → ∞.
Introduce the abbreviations

εk = xk − α, εk+1 = xk+1 − α, wk = xk + γkf (xk), εk,w = wk − α,

qk = γkf ′(α), cj =
f (j)(α)

j!f ′(α)
(p = 2, 3, . . .).

Using Taylor’s series about the root α, we obtain

f (xk) = f ′(α)(εk + c2ε2
k + c3ε3

k + O(ε4
k )) (9)

and

f (xk + γkf (xk)) = f ′(α)

(1 + qk)εk + c2(1 + 3qk + q2k)ε

2
k

+ (2c22qk(1 + qk) + c3(1 + 4qk + 3q2k + q3k))ε
3
k + O(ε4

k )

. (10)
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In view of (9) and (10) we find from (1)

εk+1 = xk+1 − α = εk −
γkf (xk)2

f (xk + γkf (xk)) − f (xk)

= c2(1 + qk)ε2
k + (−c22 (2 + 2qk + q2k) + c3(2 + 3qk + q2k))ε

3
k + O(ε4

k ). (11)

This error relation plays the key role in our study.
From the error relation (11)we observe that the choice γk = −1/f ′(α) in (1)would provide cubic convergence. However,

f ′(α) is unknown in practice, so we content ourselves with some approximation f̄ ′(xk) of f ′(α). In this work we use the
following approximation: f̄ ′(xk) = N ′

2(xk), where N2(t) = N2(t; xk, xk−1, wk−1) is Newton’s interpolatory polynomial of
second degree, set through three available approximations (nodes) xk, xk−1 and wk−1 to interpolate f . According to this
formula, the self-correcting parameter γk is calculated as

γk = −
1

N ′

2(xk)
. (12)

Combining (1) and (12), we construct the following derivative free method with memory of Steffensen’s type:
γ0 is given, γk = −

1
N ′

2(xk)
for k ≥ 1,

xk+1 = xk −
γkf (xk)2

f (xk + γkf (xk)) − f (xk)
.

(k = 0, 1, . . .) (13)

Lemma 1. N ′

2(xk) ∼ f ′(α)(1 − c3εk−1εk−1,w).

Proof. Using divided differences, we find

N ′

2(xk) =


d
dt

N2(t)

t=xk

=


d
dt

(f (xk) + f [xk, xk−1](t − xk) + f [xk, xk−1, wk−1](t − xk)(t − xk−1))


t=xk

= f [xk, xk−1] + f [xk, xk−1, wk−1](xk − xk−1)

= f [xk, wk−1] + f [xk, xk−1] − f [xk−1, wk−1]. (14)

The estimation of N ′

2(xk) is obtained using (9) and (14) as follows:

N ′

2(xk) = f [xk, xk−1] + f [xk, wk−1] − f [wk−1, xk−1]

=
f (xk) − f (xk−1)

xk − xk−1
+

f (xk) − f (wk−1)

xk − wk−1
−

f (wk−1) − f (xk−1)

wk−1 − xk−1

=
f (xk) − f (xk−1)

εk − εk−1
+

f (xk) − f (wk−1)

εk − εk−1,w
−

f (wk−1) − f (xk−1)

εk−1,w − εk−1

= f ′(α)


εk − εk−1 + c2(ε2

k − ε2
k−1) + c3(ε3

k − ε3
k−1) + . . .

εk − εk−1

+
εk − εk−1,w + c2(ε2

k − ε2
k−1,w) + c3(ε3

k − ε3
k−1,w) + . . .

εk − εk−1,w

−
εk−1,w − εk−1 + c2(ε2

k−1,w − ε2
k−1) + c3(ε3

k−1,w − ε3
k−1) + . . .

εk−1,w − εk−1



= f ′(α)(1 + 2c2εk + c3(2ε2
k − εk−1εk−1,w + εkεk−1 + εkεk−1,w) + . . .)

∼ f ′(α)(1 − c3εk−1εk−1,w). �

Now we state the following convergence theorem.

Theorem 1. If an initial approximation x0 is sufficiently close to a zero α of f , then the R-order of convergence of the two-point
method (13) is at least 3.
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Proof. According to (9) we have

εk,w = wk − α = εk + γkf ′(α)(εk + c2ε2
k + O(ε3

k )) ∼ (1 + γkf ′(α))εk, (15)

while the error relation (11) gives

εk+1 ∼ (1 + γkf ′(α))ε2
k . (16)

Suppose that the R-orders of the sequences xk and wk are r and p, respectively. In view of (8) we have

εk+1 ∼ Ak,rε
r
k ∼ Ak,r(Ak−1,rε

r
k−1)

r
∼ Ak,rAr

k−1,rε
r2
k−1 (17)

and

εk,w ∼ Ak,pε
p
k ∼ Ak,p(Ak−1,rε

r
k−1)

p
∼ Ak,pA

p
k−1,rε

rp
k−1. (18)

By virtue of Lemma 1 we have

1 + γkf ′(xk) ∼ c3εk−1εk−1,w. (19)

Combining (16)–(19) yields

εk+1 ∼ (1 + γkf ′(α))ε2
k ∼ c3εk−1εk−1,wε2

k ∼ c3Ak−1,pA2
k−1,rε

2r+p+1
k−1 . (20)

Similarly, by (15) and (17)–(19),

εw,k ∼ (1 + γkf ′(α))εk ∼ c3εk−1εw,k−1εk ∼ c3Ak−1,pAk−1,rε
r+p+1
k−1 . (21)

Equating exponents of the error εk−1 in pairs of relations (17)∧ (20) and (18)∧ (21), we come to the system of equations

r2 − 2r − p − 1 = 0,
rp − r − p − 1 = 0.

A positive solution is given by r = 3 and p = 2, which means that the R-order of convergence of the two-point method (13)
is at least 3. �

3. Numerical results

We have tested the new method (13) using the computational software package Mathematica with multiple-precision
arithmetic. For comparison purposes, we have also tested the Steffensen-like method (1), Traub’s method (7), the Newton-
secant method (4) and three one-point methods displayed below.

xk+1 = xk −
f (xk)
f ′(xk)

(Newton’s method, order 2), (22)

xk+1 = xk −
f (xk)
f ′(xk)


1 −

f (xk)f ′′(xk)
2f ′(xk)2

−1

(Halley’s method, order 3), (23)

xk+1 = xk −
f (xk)

f ′(xk)2 − f (xk)f ′′(xk)
(Ostrowski’s method, order 3). (24)

The errors |xk − α| of approximations to the zeros are given in Tables 1 and 2, where A(−h) denotes A × 10−h. These
tables include the values of the computational order of convergence rc calculated by using the formula

rc =
log |f (xk)/f (xk−1)|

log |f (xk−1)/f (xk−2)|
, (25)

taking into consideration the last three approximations in the iterative process. For a demonstration, we have chosen two
test functions:

f1(x) = (x − 2)


5
x2

+
1
5x

− 4x − x5

ex

2
−2x+ 1

x3 , x0 = 2.2, a = 2,

f2(x) = x log(1 + x sin x) + ex cos x+x2−1 sinπx, x0 = 0.5, α = 0.

Both examples have dealt with γ0 = 0.01.
From Tables 1 and 2 and a number of numerical examples we can conclude that the proposed method (13) is certainly

better than quadratically convergent methods, such as (1) and (22). The method (13) is competitive with third-order
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Table 1
Errors of approximation to the zero of f1 .

Methods |x1 − α| |x2 − α| |x3 − α| |x4 − α| rc (25)

Steffensen-like IM (1) 1.13(−3) 2.88(−6) 1.88(−11) 7.97(−22) 1.9999
Traub’s IM (7) 1.13(−3) 2.90(−6) 1.53(−13) 1.10(−30) 2.3559
Newton’s IM (22) 9.29(−2) 2.59(−2) 2.47(−3) 2.42(−5) 1.8935
Halley’s IM (23) 3.12(−2) 2.00(−4) 5.80(−11) 1.42(−29) 2.9998
Ostrowski’s IM (24) diverge
Newton-secant IM (4) 4.81(−2) 1.39(−3) 4.31(−8) 1.29(−21) 2.9977
New method (13) 1.13(−3) 1.21(−8) 1.28(−23) 1.54(−68) 3.0000

Table 2
Errors of approximation to the zero of f2 .

Methods |x1 − α| |x2 − α| |x3 − α| |x4 − α| rc (25)

Steffensen-like IM (1) 2.60(−2) 6.71(−4) 4.55(−7) 2.10(−13) 1.9998
Traub’s IM (7) 2.60(−2) 2.04(−4) 1.07(−9) 2.32(−22) 2.3981
Newton’s IM (22) 2.94(−2) 8.49(−4) 7.20(−7) 5.18(−13) 1.9997
Halley’s IM (23) 1.63(−1) 3.46(−3) 1.22(−8) 5.14(−25) 3.0032
Ostrowski’s IM (24) 1.48(−1) 1.37(−3) 5.50(−10) 3.67(−29) 2.9980
Newton-secant IM (4) 8.95(−3) 7.11(−7) 3.59(−19) 4.63(−56) 2.9999
New method (13) 2.60(−2) 1.86(−4) 2.11(−12) 2.62(−36) 3.0089

methods considering the accuracy of the approximations produced, but it attains such accuracy using only two function
evaluations per iteration. A better insight into the computational efficiency can be obtained by comparing efficiency
indices.

Using (5) we calculate the efficiency indices

E(1) = E(22) ≈ 1.414, E(4) = E(23) = E(24) ≈ 1.442, E(7) ≈ 1.554, E(13) ≈ 1.732.

We observe that the proposed method (13) is significantly more efficient than the methods considered. Moreover, the
efficiency index of (13) is even higher than that of optimal two-point methods (= 41/3

≈ 1.587) and optimal three-
point methods (= 81/4

≈ 1.682); see, e.g., [6,7]. Having in mind that very fast iterative methods produce very accurate
approximations not required for real-life problems, it turns out that the newmethod (13) is of important practical interest.

We end this work with an analogous method for solving systems of nonlinear equations. Introduce an n-dimensional
divided difference [x, y; f ] as an n × nmatrix with elements

[x, y; f ]i,j =
fi(x(1), . . . , x(j), y(j+1), . . . , y(n)) − fi(x(1), . . . , x(j−1), y(j), . . . , y(n))

x(j) − y(j)
,

where x = (x(1), . . . , x(n)) and f = (f1, . . . , fn) are vectors (see [8, p. 20]). Having in mind that N ′

2(xk) is a matrix
N ′

2(xk) = [xk, wk−1; f ] + [xk, xk−1; f ] − [xk−1, wk−1; f ] (see the proof of Lemma 1), starting from (13) we can construct
the following analogous method for solving systems of nonlinear equations:

γ0 is given, γk = −[N ′

2(xk)]
−1 for k ≥ 1,

xk+1 = xk − [xk, xk + γkf (xk); f ]−1f (xk).
(k = 0, 1, . . .) (26)

Unfortunately, the two-step method (26) does not keep the advantage of low computational cost of the scalar method
(13) since the calculation of γk in the iterative scheme (26) requires the inverse of the sum of three matrices. A simple
analysis shows that the method (26) needs 8n2

+ n function evaluations (of n variables) plus two matrix inversions, while
some existing two-step methods of the form

yk = xk − [g1(xk), g2(xk); f ]−1f (xk),
xk+1 = yk − [g1(xk), g2(xk); f ]−1f (yk)

(k = 0, 1, . . .) (27)

(presented, e.g., in [8–10]) require only 2n2
+ 2n function evaluations plus one matrix inversion. Because of this low

computational efficiency, we did not study the method (26) in detail, restricting our research to the scalar method (13),
which is more efficient than scalar versions of the methods of the form (27).
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