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a b s t r a c t

An accelerating generator of iterative methods for finding multiple roots, based on Traub’s
differential–difference recurrence relation, is presented. It is proved that this generator
yields an iteration function of order r + 1 starting from arbitrary iteration function of
order r. In this way, it is possible to construct various iterative formulas of higher order
for finding single roots of nonlinear equations and all simple or multiple roots of algebraic
polynomials, simultaneously. For demonstration, two iterativemethods of the fourth order
in ordinary (real or complex) arithmetic and an iterative method in interval arithmetic are
presented.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Fundamental and challenging results of Traub [1] on a general theory of iteration algorithms for the numerical solution
of nonlinear equations were developed almost half a century ago. However, many contributions from Traub’s 1964 book
are still inspiring and are real. Recently, many worth variants on Traub’s classic results were presented in [2]. In this paper,
we also consider some of Traub’s classic results from 1964. We restrict our study to Traub-like accelerating generator for
iterative methods for finding simple or multiple roots of nonlinear equations f (x) = 0. In particular, we construct iterative
methods for the simultaneous determination of polynomial roots in ordinary and interval arithmetic. All of these methods
are produced by suitable accelerating generator of iteration functions. An iterative method of the order of convergence of
r + 1 is generated from the previous method of order r using a special transformation. Such an accelerating generator was
proposed in [3]. Here we presented another one based on Traub’s recurrence relation [1].

Letα be the zero of a function f ofmultiplicitym. Following Traub’s terminology [1], wewill say that an iteration function
ϕ is of order r and write ϕ ∈ Kr if it defines an iterative method of order r . To generate the basic sequence of root-solvers,
Traub [1] derived the following differential–difference recurrence relation

ϕr+1(x) = ϕr(x) −
m
r
u(x)ϕ′

r(x), u(x) =
f (x)
f ′(x)

, (1)

where ϕr(x) is a given iteration function which defines the iterative method of the order of convergence r . The recurrence
relation (1) starts with Newton’s methods ϕ2(x) = N (x) = x − f (x)/f ′(x) (for simple roots) and ϕ2(x) = N (x) =

x − mf (x)/f ′(x) (for multiple roots). In the case of simple roots, the generated sequence

E2 = N (x) = x − u(x), E3 = E2 − A2(x)u(x)2, E4 = E3 − (2A2(x)2 − A3(x))u(x)2, . . .
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makes the well-known Schröder–König family E = {E2, E3, E4, . . .} of the first kind, see [4,1], where Ak(x) =

f (k)(x)/(k!f ′(x)).
The following natural question arises: Is it possible to take an iteration function ϕk ∉ E and still generate an iterative

method of order k+1? The study of this question is themain goal of this paper; we show that the relation (1) can be used for
generating iterative formulas starting not only from the mentioned Newton methods ϕ2(x) but from any iterative method
of arbitrary order r (Section 2). In this way it is possible to construct various iterative formulas of higher order for finding
single (simple or multiple) root of nonlinear equations (Section 3) and all simple or multiple roots of algebraic polynomials,
simultaneously (Section 4). In Section 5, we derive a root-relation which is convenient for the construction of an iterative
method for the simultaneous inclusion of simple ormultiple roots of an algebraic polynomial. For simplicity, the abbreviation
I.F. will henceforth be used for iteration function.

2. Traub’s accelerating generator of iterative methods

We start from the well-known assertion on the order of convergence of iterative root-finding methods.

Theorem 1 (Traub [1, Theorem 2.2]). Let ϕ be I.F. such that ϕ and its derivatives ϕ′, . . . , ϕ(r) are continuous in the neighborhood
of a zero α of a given function f . Then ϕ defines an iterative method of order r if and only if

ϕ(α) = α, ϕ′(α) = · · · = ϕ(r−1)(α) = 0, ϕ(r)(α) ≠ 0. (2)

The following theorem is concerned with the acceleration of iterative methods by using Traub’s relation (1).

Theorem 2. Let ϕr(x) be an I.F. which defines themethod xk+1 = ϕr(xk) (k = 0, 1, . . .) of order r for finding a simple ormultiple
zero of a given sufficiently many times differentiable function f . Then the iterative method

xk+1 = ϕr+1(xk) := ϕr(xk) −
m
r
u(xk)ϕ′

r(xk), (r ≥ 2; k = 0, 1, . . .), (3)

originated from (1), where m denotes the multiplicity of the above-mentioned zero, has the order of convergence r + 1.

Proof. For two real or complex numbers z and w wewill write z = OM(w) if |z| = O(|w|) (the same order of their moduli),
where O represents the Landau symbol.

Let us introduce the error ε = x − α. Since ϕr ∈ Kr , bearing in mind the relations (2) we find by Taylor’s series

ϕr(x) = α +
1
r!

ϕ(r)
r (α)εr

+
1

(r + 1)!
ϕ(r+1)
r (α)εr+1

+ OM(εr+2), (4)

and

ϕ′

r(x) =
1

(r − 1)!
ϕ(r)
r (α)εr−1

+
1
r!

ϕ(r+1)
r (α)εr

+ OM(εr+1). (5)

Let f (x) = (x − α)mg(x), g(α) ≠ 0. Hence

u(x) =
f (x)
f ′(x)

=
ε

m
−

ε2

m2

g ′(x)
g(x)

+ OM(ε3). (6)

By virtue of (4)–(6), we get

ϕr+1(x) = ϕr(x) −
mu(x)

r
ϕ′

r(x) = α +
1
r!


g ′(x)
g(x)

·
ϕ

(r)
r (α)

m
−

ϕ
(r+1)
r (α)

r


εr+1

+ OM(εr+2).

Hence, ϕr+1(x) − α = OM(εr+1), which means that ϕr+1 ∈ Kr+1. �

Inwhat follows,wewill demonstrate three applications of Traub’s accelerating generator (3) to derive somenew iterative
formulas in connection with Traub’s inspired results.

3. Application 1: fourth-order method for a single root

Let Ak(x) = f (k)(x)/(k!f ′(x)) as above. The third-order Halley-like method for finding a multiple zero α of multiplicitym
of a real or complex function f is defined by (see, e.g., [5,6])

H(x) = x −
2u(x)

(m + 1)/m − 2u(x)A2(x)
.
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Let us note that H ∉ E. Finding H ′(x) and applying Traub’s formula (1) in the form

H4(x) = H(x) −
mu(x)

3
H ′(x)

with r = 3, after short arrangement we obtain the fourth-order iterative method (omitting argument x of u, A2 and A3)

H4(x) = x −

mu

7 + 6m − m2

− 12muA2 + 12m2u2(A2
2 − A3)


3(m + 1 − 2muA2)2

.

In the case of a simple zero (m = 1), the above iterative formula reduces to

H4(x) = x −

u

1 − uA2 + u2(A2

2 − A3)


(1 − uA2)2
.

We can continue to generate higher-order methods using H4 in (1), and so on, but these iterative formulas are rather
cumbersome.

Remark 1. Higher-order methods derived in this paper have a structure of the form

x̂ = x −
b0 − b1f (x) − b2f (x)2 − · · · − bpf (x)p

1 − c1f (x) − c2f (x)2 − · · · − cqf (x)q
.

If approximations x are reasonably close to the zero α, then |f (x)| is small enough. The above polynomial form (in f (x)) of
the numerator and denominator prevents negative effect of rounding errors. However, the disadvantage of higher-order
iterative formulas comes from the use of derivatives of higher order, which increases the total computational costs of these
fast but expensive methods. This means that one-point iterative methods of a very high order are not suitable for practical
application.

4. Application 2: fourth-order simultaneous method

Let f (x) = xn + an−1xn−1
+ · · · + a1x + a0 be a monic polynomial (leading coefficient is 1) of degree n having real or

complex rootsα1, . . . , αν (ν ≤ n) ofmultiplicitiesµ1, . . . , µν , respectively, and let Iν = {1, . . . , ν} be the index set. Assume
that x is an approximation to the root αi which is improved iteratively, and let x1, . . . , xi−1, xi+1, . . . , xν be approximations
to the remaining roots which are fixed during the iterative process. Consider the I.F.

M(x) = x −
µi

1
u(x) −

∑
j∈Iν\{i}

µj
x−xj

(7)

which defines, in fact, the modified Newton method of the form

M(x) = x −
µif (x)

f ′(x) + λf (x)
, (λ is a real parameter), (8)

studied by numerous authors. The form (7) was analyzed by Maehly [7] for simple roots. It is known that the iteration
function (8) defines a quadratically convergent method; see, e.g., [8]. Therefore, the iteration functionM(x) given by (7) also
defines a quadratically convergent method.

For simplicity, introduce the abbreviation

Sk,i(x) =

−
j∈Iν\{i}

µj
x − xj

k (k = 1, 2).

Then

M ′(x) = 1 +

µi


u(x)2S2,i(x) + u(x) f ′′(x)

f ′(x) − 1



1 − u(x)S1,i(x)

2 .

Let us apply Traub’s accelerating formula (1) to the iteration function (7) taking r = 2, then we obtain

M(x) := M(x) −
µiu(x)

2
M ′(x)

= x − µiu(x) −

µiu(x)


1 − µi + u(x)µi

f ′′(x)
f ′(x) − u(x)2(S21,i(x) − µiS2,i(x))


2

1 − u(x)S1,i(x)

2 . (9)
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The I.F. M(x) defines the third-order method assuming that only the approximation x to the root αi is iterated. Obviously,
the method (9) applied in this manner is inefficient and has little practical importance. For this reason, let us assume now
that all approximations x1, . . . , xν (with x = xi) are improved simultaneously in the course of iterative process. Then the
iterative formula (9) becomes

x̂i = M(xi) = xi − µiui −

µiui


1 − µi + uiµi

f ′′(xi)
f ′(xi)

− u2
i (S

2
1,i − µiS2,i)


2

1 − uiS1,i

2 (i ∈ Iν), (10)

where we introduce ui = u(xi), Sk,i = Sk,i(xi) and x̂i is a subsequent approximation. The iterative method (10) can serve for
the simultaneous determination of multiple roots of a polynomial. In what follows all quantities in the subsequent iteration
will be denoted by the symbol .̂

As mentioned above, the I.F. M(x) is of the second order if only one approximation is iterated in the iterative process.
If all approximations are simultaneously improved, then the method defined by x̂i = M(xi) is the Ehrlich-like third-order
method for multiple roots (see [9,10]). In a similar way, M(xi) defines the fourth-order method, which is the subject of the
following theorem.

Theorem 3. Assume that approximations x1, . . . , xν are sufficiently close to the roots α1, . . . , αν . Then the iterative method
defined by (10) has the order of convergence four.

Proof. Let

Tk,i =

−
j∈Iν\{i}

µj
xi − αj

k (k = 1, 2).

Starting from the factorization f (x) =
∏ν

j=1(x − αj)
µj , we find

d
dx

log

f (x)


=

f ′(x)
f (x)

=

ν−
j=1

µj

x − αj
, (11)

−
d
dx


f ′(x)
f (x)


=

f ′(x)2 − f (x)f ′′(x)
f (x)2

=

ν−
j=1

µj

(x − αj)2
. (12)

Taking x = xi in (11) and (12), and introducing the error εi = xi − αi, we obtain

1
ui

=
µi

εi
+ T1,i, that is, ui =

εi

µi + εiT1,i
, (13)

and (using (13))

f ′′(xi)
f ′(xi)

=
1
ui

−
µiui

ε2
i

− uiT2,i =
µi + εiT1,i

εi
−

µi

εi(µi + εiT1,i)
−

εiT2,i
µi + εiT1,i

. (14)

Substituting (13) and (14) in (10), after extensive but elementary calculations we obtain

M(xi) − αi =

ε3
i


2εi(T1,i − S1,i)2T1,i + µi(T1,i − S1,i)(3T1,i − S1,i) + µ2

i (T2,i − S2,i)


2(µi + εiT1,i)(µi + εi(T1,i − S1,i))2
. (15)

Assume that ε ∈ {ε1, . . . , εν} is the error of the largest modulus but preserving the same order of moduli of all errors,
that is, |εj| = O(|ε|). Since

T1,i − S1,i =

−
j∈Iν\{i}

µj


1

xi − αj
−

1
xi − xj


= −

−
j∈Iν\{i}

µjεj

(xi − αj)(xi − xj)
= OM(ε),

and

T2,i − S2,i =

−
j∈Iν\{i}

µj


1

(xi − αj)2
−

1
(xi − xj)2


= −

−
j∈Iν\{i}

µjεj(2xi − xj − αj)

(xi − αj)2(xi − xj)2
= OM(ε),

returning to (15) and bearing in mind that the denominator of (15) tends to 2µ3
i as εi → 0, we find

ε̂i = x̂i − αi = M(xi) − αi = ε3
i OM(ε) = OM(ε4).

This means that the order of convergence of the simultaneous method defined by (10) is four. �
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If all roots are simple (µ1 = · · · = µn = 1), then the iterative formula (10) reduces to

M(xi) = xi − ui −

u2
i


f ′′(xi)
f ′(xi)

− ui(S21,i − S2,i)


2

1 − uiS1,i

2 (i = 1, . . . , n),

where Sk,i =
∑

j∈In\{i}
1

xi−xj
k (k = 1, 2).

Combining (3) and (9) we can construct iterative method of the fifth order for simultaneous finding simple or multiple
roots of polynomials, which can be further accelerated using (3).

5. Application 3: inclusion method for polynomial roots

Substituting the sums S1,i and S2,i by the sums T1,i and T2,i (respectively) in (9), we obtain

M∗(xi) = xi − µiui −

µiui


1 − µi + uiµi

f ′′(xi)
f ′(xi)

− u2
i (T

2
1,i − µiT2,i)


2

1 − uiT1,i

2 (i = 1, . . . , ν). (16)

Lemma 1. M∗(xi) = αi.

The proof is straightforward by substituting (11) and (12) in (15).
In this section real or complex intervals are denoted in bold. Let Xi := M(xi) be a real or complex interval extension

of M∗(xi) obtained by substituting the roots αj (j ≠ i) in the sums T1,i and T2,i on the right-hand side of (15) by (real or
complex) intervals Xj that contain these roots (that is, αj ∈ Xj). It is assumed that xi is the midpoint of the interval Xi. More
about interval extension can be found in the book [11].

According to the subset property and Lemma 1 it follows αi = M∗(xi) ∈ Xi = M(xi). Define a new inclusion intervalXi
by

Xi := xi − µiui −

µiui


1 − µi + uiµi

f ′′(xi)
f ′(xi)

− u2
i (S

2
1,i − µiS2,i)


2

1 − uiS1,i

2 (i = 1, . . . , ν), (17)

where

Sk,i =

ν−
j=1
j≠i

µj


1

xi − Xj

k

(k = 1, 2).

If the denominator of (17) does not contain the origin, then the iterative formula (17) defines an iterative interval method
for the simultaneous inclusion of all multiple roots of a polynomial P providing α ∈ Xi in each iterative step. Conditions for
the convergence and the order of convergence of the interval method (17) will be considered in the forthcoming research.

6. Further improvements

The presented accelerating generator of Traub’s type produces higher-order basic methods for finding simple and
multiple roots of nonlinear equations. The basic method (10) in real or complex arithmetic and the method (17) in real or
complex interval arithmetic can serve for further improvements by using suitable correctionswhich considerably accelerate
the convergence speed of the basic methods without additional function evaluations. In this way their computational
efficiency is significantly increased. Such an approach for simple zeros is presented in the papers [12,13], together with
an extensive discussion of initial computationally verifiable conditions that guarantee the convergence of the methods
presented in this paper, numerical examples and comparison of various methods of the similar type, including the basic
methods (10) and (17) and their improvements. For this reason and the required limit of papers addressed to this journal,
the reviews of computational aspects and convergence conditions are omitted.
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