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a b s t r a c t

A new family of three-point derivative free methods for solving nonlinear equations is pre-
sented. It is proved that the order of convergence of the basic family without memory is eight
requiring four function-evaluations, which means that this family is optimal in the sense of the
Kung–Traub conjecture. Further accelerations of convergence speed are attained by suitable
variation of a free parameter in each iterative step. This self-accelerating parameter is calcu-
lated using information from the current and previous iteration so that the presented methods
may be regarded as the methods with memory. The self-correcting parameter is calculated
applying the secant-type method in three different ways and Newton’s interpolatory polyno-
mial of the second degree. The corresponding R-order of convergence is increased from 8 to
4ð1þ

ffiffiffi
5
p

=2Þ � 8:472, 9, 10 and 11. The increase of convergence order is attained without
any additional function calculations, providing a very high computational efficiency of the pro-
posed methods with memory. Another advantage is a convenient fact that these methods do
not use derivatives. Numerical examples and the comparison with existing three-point meth-
ods are included to confirm theoretical results and high computational efficiency.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

The most efficient existing root-solvers are based on multipoint iterations since they overcome theoretical limits of
one-point methods concerning the convergence order and computational efficiency. The upper bound of order of multiple
methods was discussed in [8] by Kung and Traub who conjectured that the order of convergence of any multipoint method
without memory, consuming n + 1 function evaluations per iteration, cannot exceed the bound 2n (called optimal order). This
hypothesis has not been proved yet but it turned out that all existing methods constructed at present support the
Kung–Traub conjecture.

In this paper we derive a new family of three-point methods of order eight, requiring four function evaluations per iter-
ation. This means that the proposed family supports the Kung–Traub conjecture, too. Besides, this family does not use any
derivative of a function f whose zeros are sought, which is another advantage since it is preferable to avoid calculations of
derivatives of f in many practical situations.

Bearing in mind that derivative free higher-order multipoint methods without memory were already derived in the lit-
erature, see [8,19], the proposed family of three-point methods could be regarded as a competitive contribution to the topic,
but without particular advances. However, using an old idea by Traub [16], recently extended in [12], we improved this basic
family without memory and constructed the corresponding family of three-point methods with memory. We show that the
order of convergence of the new family can be considerably increased by varying a free parameter in each iterative step. The
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significant increase of convergence speed is achieved without additional function evaluations. This means that the proposed
methods with memory possess a very high computational efficiency, which is the main advantage of these methods com-
pared with existing multi-point methods.

This paper is organized as follows. In Section 2 we describe a derivative free family of two-point methods of order four.
This family is the base for constructing a new family of three-point methods of optimal order eight, which also does not use
derivatives (Section 3). The proposed eight order family depends on a real parameter that can be recursively calculated dur-
ing the iterative process in order to accelerate the convergence. In Section 4 we present four approaches for calculation of
this varying parameter, called self-accelerating parameter, relied on the secant-type approach in three different ways and
Newton’s interpolatory polynomial of second degree. These accelerating techniques use information from the current and
the previous iterative step, defining in this way three-point methods with memory. It is shown in Section 5 that the R-order
of the corresponding methods with memory is increased from 8 (the basic family without memory) to 2ð2þ

ffiffiffi
5
p
Þ � 8:472, 9,

10 and 11, depending on the accelerating technique. Numerical examples and the comparison with existing three-point
methods are given in Section 6 to confirm theoretical results and to demonstrate very fast convergence and a high compu-
tational efficiency of the proposed methods.

2. Derivative free two-point methods

Let a be a simple real zero of a real function f : D � R ? R and let x0 be an initial approximation to a. As in the case of the
Kung–Traub family of derivative free methods [8], we start with the derivative free method

xkþ1 ¼ xk �
cf ðxkÞ2

f ðxk þ cf ðxkÞÞ � f ðxkÞ
ðk ¼ 0;1; . . .Þ ð1Þ

of Steffensen’s type with quadratic convergence (see [16, p. 185]), where c is a real constant.
Introduce the abbreviations

ek ¼ xk � a; ck ¼
f ðkÞðaÞ
k!f 0ðaÞ ðk ¼ 2;3; . . .Þ:

Let

uðxÞ ¼ f ðxþ cf ðxÞÞ � f ðxÞ
cf ðxÞ ; ð2Þ

be a function that appears in the Steffensen-like method (1). The following derivative free family of two-point iterative
methods was derived in [13],

yk ¼ xk � f ðxkÞ
uðxkÞ

;

xkþ1 ¼ yk � hðuk;vkÞ f ðykÞ
uðxkÞ

8<
: ðk ¼ 0;1; . . .Þ; ð3Þ

where

uk ¼
f ðykÞ
f ðxkÞ

; vk ¼
f ðykÞ

f ðxk þ cf ðxkÞÞ

and h is a two-valued function that satisfies the conditions

hð0;0Þ ¼ huð0;0Þ ¼ hvð0;0Þ ¼ 1; hvvð0;0Þ ¼ 2; jhuuð0;0Þj <1; jhuvð0;0Þj <1: ð4Þ

Here the subscript indices denote corresponding partial derivatives of h.
If x0 is an initial approximation sufficiently close to the zero a of f, it was proved in [13] that the family of two-point meth-

ods (3) is of order four and the error relation

ekþ1 ¼ xkþ1 � a ¼ �c2ð1þ cf 0ðaÞÞ2 c3 þ c2
2ð�4þ huuð0;0Þ=2þ huvð0;0Þ þ ðhuuð0;0Þ=2� 1Þcf 0ðaÞÞ

� �
e4

k þ O e5
k

� �
: ð5Þ

holds.

Remark 1. Considering the double Newton scheme

yk ¼ xk � f ðxkÞ
f 0 ðxkÞ

;

xkþ1 ¼ yk � f ðykÞ
f 0 ðykÞ

8<
: ðk ¼ 0;1; . . .Þ ð6Þ

and (3), we see that u(x) is an approximation to the first derivative f0(x) in (6) assuming that jf(x)j is small enough. The deriv-
ative f0(y) in the second step of (6) is approximated by u(x)/h(u,v), where h(u,v) satisfies the conditions (4).

Henceforth we will consider that the function h = h(u,v) satisfies the conditions (4) without being cited. Several simple
forms of the function h are given below:
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(1) hðu;vÞ ¼ 1þu
1�v ;

(2) hðu;vÞ ¼ 1
ð1�uÞð1�vÞ ;

(3) h(u,v) = 1 + u + v + v2;
(4) h(u,v) = 1 + u + v + (u + v)2;
(5) hðu;vÞ ¼ uþ 1

1�v.

Note that the function hðu;vÞ ¼ 1
ð1�uÞð1�vÞ gives the Kung–Traub method

yk ¼ xk � cf ðxkÞ2
f ðxkþcf ðxkÞÞ�f ðxkÞ

;

xkþ1 ¼ yk � f ðykÞf ðxkþcf ðxkÞÞ
ðf ðxkþcf ðxkÞÞ�f ðykÞÞf ½xk ;yk �

;

8<
: ðk ¼ 0;1; . . .Þ; ð7Þ

where f[x,y] = (f(x) � f(y))/(x � y) denotes a divided difference. This method is obtained as a special case of Kung–Traub’s
family of derivative free methods presented in [8].

3. A new family of three-point methods

Now we construct a family of three-point methods relied on the two-step family (3). We start from a three-step scheme
where the first two steps are given by (3), and the third step is Newton’s method, that is,

yk ¼ xk � f ðxkÞ
uðxkÞ

;

zk ¼ yk � hðuk; vkÞ f ðykÞ
uðxkÞ

;

xkþ1 ¼ zk � f ðzkÞ
f 0ðzkÞ

:

8>>><
>>>: ð8Þ

The iterative scheme (8) is inefficient since it requires five function evaluations. For this reason, the derivative f0(zk) in the
third step of (8) should be substituted by a suitable approximation in such way that (i) only available data, not including
calculation of derivatives, are used and (ii) the order of convergence of the new iterative three-step scheme is at least eight
consuming four function evaluations. To provide these requirements, we apply Newton’s interpolatory polynomial of degree
three at the points wk = xk + cf(xk), xk, yk and zk, that is,

N3ðtÞ ¼ f ðzkÞ þ f ½zk; yk�ðt � zkÞ þ f ½zk; yk; xk�ðt � zkÞðt � ykÞ þ f ½zk; yk; xk;wk�ðt � zkÞðt � ykÞðt � xkÞ: ð9Þ

It is obvious that N3(zk) = f(zk). Differentiating (9) and setting t = zk, we obtain

N03ðzkÞ ¼ f ½zk; yk� þ f ½zk; yk; xk�ðzk � ykÞ þ f ½zk; yk; xk;wk�ðzk � ykÞðzk � xkÞ: ð10Þ

Substituting f 0ðzkÞ � N03ðzkÞ in (8) we state a new family of three-point methods free of derivatives,

yk ¼ xk � f ðxkÞ
uðxkÞ

;

zk ¼ yk � hðuk; vkÞ f ðykÞ
uðxkÞ

; ðk ¼ 0;1; . . .Þ;

xkþ1 ¼ zk � f ðzkÞ
f ½zk ;yk �þf ½zk ;yk ;xk �ðzk�ykÞþf ½zk ;yk ;xk ;wk �ðzk�ykÞðzk�xkÞ

;

8>>><
>>>: ð11Þ

where u is defined by (2) and h is a two-valued weight function that satisfies (4). N03 given by (10) (that is, the denominator
of (11)) can be easily calculated by the five-step algorithm:

1� R1 ¼ f ½z; y� ¼ f ðzÞ�f ðyÞ
z�y ;

2� R2 ¼ f ½y; x� ¼ f ðyÞ�f ðxÞ
y�x ;

3� R3 ¼ f ½x;w� ¼ f ðxÞ�f ðwÞ
x�w ;

4� R4 ¼ f ½z; y; x� ¼ R2�R1
x�z ;

5� N03ðzÞ ¼ R1 þ R4ðz� yÞ þ R3�R2
w�y � R4

� �
ðz�yÞðz�xÞ

w�z .

Now we state the following convergence theorem for the family (11).

Theorem 1. If an initial approximation x0 is sufficiently close to the zero a of f and the weight function h satisfies the conditions
(4), then the convergence order of the family of three-point methods (11) is equal to eight.

Proof. Let Nm be the Newton interpolation polynomial of degree m that interpolates a function f at m + 1 distinct interpo-
lation nodes t0, t1, . . . , tm contained in an interval I and the derivative f(m+1) is continuous in I. Then the error of the Newton
interpolation is given by the well known formula
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f ðtÞ � NmðtÞ ¼
f ðmþ1ÞðnÞ
ðmþ 1Þ!

Ym
j¼0

ðt � tjÞ ðn 2 IÞ: ð12Þ

For m = 3 we have from (12)

f ðtÞ � N3ðtÞ ¼
f ð4ÞðnÞ

4!
ðt �wkÞðt � xkÞðt � ykÞðt � zkÞ;

taking t0 = wk, t1 = xk, t2 = yk, t3 = zk. Hence

f 0ðzkÞ � N03ðzkÞ ¼ ½f 0ðtÞ � N03ðtÞ�t¼zk
¼ f ð4ÞðnÞ

4!
ðzk �wkÞðzk � xkÞðzk � ykÞ: ð13Þ

The errors at the first two steps of (11) are given by

ek;y :¼ yk � a ¼ c2ð1þ cf 0ðaÞÞe2
k þ Oðe3

kÞ ðsee Traub ½16; p: 185�Þ; ð14Þ

and

ek;z :¼ zk � a ¼ A4ðaÞe4
k þ Oðe5

kÞ ðsee ð5ÞÞ; ð15Þ

where A4 is the asymptotic error constant of the fourth-order family (3) given by

A4ðaÞ ¼ �c2ð1þ cf 0ðaÞÞ2 c3 þ c2
2ð�4þ huuð0;0Þ=2þ huvð0;0Þ þ ðhuuð0;0Þ=2� 1Þcf 0ðaÞÞ

� �
for a fixed constant c (–f0(a)). From (14) and (15) we find

zk �wk ¼ OðekÞ; zk � xk ¼ OðekÞ; zk � yk ¼ Oðe2
kÞ: ð16Þ

Replacing the error differences given by (16) in (13), we obtain f 0ðzkÞ � N03ðzkÞ ¼ O e4
k

� �
and hence

N03ðzkÞ ¼ f 0ðzkÞ 1þ O e4
k

� �� �
: ð17Þ

Substituting (17) in the third step of the iterative scheme (11) we find

xkþ1 ¼ zk �
f ðzkÞ

N03ðzkÞ
¼ zk �

f ðzkÞ
f 0ðzkÞ 1þ O e4

k

� �� � ¼ zk �
f ðzkÞ
f 0ðzkÞ

þ f ðzkÞO e4
k

� �
: ð18Þ

For Newton’s method we have

zk �
f ðzkÞ
f 0ðzkÞ

� a ¼ c2ðzk � aÞ2 þ Oððzk � aÞ3Þ ¼ c2e2
k;z þ O e3

k;z

� �
: ð19Þ

Also, observe that

f ðzkÞ ¼ ðzk � aÞgðzkÞ ¼ ek;zgðzkÞ; gðzkÞ – 0 with gðzkÞ ! gðaÞ when zk ! a: ð20Þ

Taking into account (19) and (20), we find from (18)

ekþ1 ¼ xkþ1 � a ¼ c2e2
k;z þ O e3

k;z

� �
þ ek;zgðzkÞO e4

k

� �
¼ O e8

k

� �
;

since ek;z ¼ O e4
k

� �
. From the last error relation we conclude that the order of convergence of the family (11) is eight, which

completes the proof of Theorem 1. h

Remark 2. The proof of Theorem 1 can also be derived using Taylor’s series and symbolic computation in a computer algebra
system (e.g., Mathematica or Maple) as performed, for example, in [15]. In this way we arrive at the error relation

ekþ1 ¼
c2

2

4
1þ cf 0ðaÞð Þ4 2c3 þ c2

2ð�8þ 2huvð0;0Þ þ cf 0ðaÞðhuuð0;0Þ � 2Þ þ huuð0;0ÞÞ
� �

� 2c2c3 � 2c4 þ c3
2ð�8þ 2huvð0;0Þ þ cf 0ðaÞðhuuð0;0Þ � 2Þ þ huuð0;0ÞÞ

� �
e8

k þ O e9
k

� �
: ð21Þ

The error relations of the three-point methods (11) for particular forms (1)–(5) of h, given above, can be calculated from (21).
The corresponding expressions are listed below:
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hðu;vÞ ¼ 1þ uþ v þ v2 and hðu; vÞ ¼ uþ 1=ð1� vÞ;
ekþ1 ¼ ð1þ cf 0ðaÞÞ4c2

2 �c3 þ c2
2ð4þ cf 0ðaÞÞ

� �
�c2c3 þ c4 þ c3

2ð4þ cf 0ðaÞÞe8
k þ O e9

k

� �� �
:

hðu;vÞ ¼ ð1þ uÞ=ð1� vÞ;
ekþ1 ¼ ð1þ cf 0ðaÞÞ4c2

2 �c3 þ c2
2ð3þ cf 0ðaÞÞ �c2c3 þ c4 þ c3

2ð3þ cf 0ðaÞÞ
� �

e8
k þ O e9

k

� �� �
:

hðu;vÞ ¼ 1=ðð1� uÞð1� vÞÞ;
ekþ1 ¼ ð1þ cf 0ðaÞÞ4c2

2 2c2
2 � c3

� �
2c3

2 � c2c3 þ c4
� �

e8
k þ O e9

k

� �
:

hðu;vÞ ¼ 1þ uþ v þ ðuþ vÞ2;
ekþ1 ¼ ð1þ cf 0ðaÞÞ4c2

2 c2
2 � c3

� �
c3

2 � c2c3 þ c4
� �

e8
k þ O e9

k

� �
:

4. New families of three-point methods with memory

We observe from (5) and (21) that the order of convergence of the families (3) and (11) is respectively four and eight
when c – �1/f0(a). If we could provide that c = �1/f0(a), it can be proved that the order of the families (3) and (11)
would be 6 and 12, respectively. However, the value f0(a) is not available in practice and such acceleration of conver-
gence is not possible. Instead of that, we could use an approximation �f 0ðaÞ � f 0ðaÞ, calculated by available information.
Then, by setting c ¼ �1=�f 0ðaÞ in (11), we can achieve that the order of convergence of the modified methods exceeds
eight without the use of any new function evaluations. We will see later that �f 0ðaÞ is calculated using information from
the current and previous iteration, in other words, �f 0ðaÞ depends on the iteration index k. However, we omit the iteration
index for simplicity.

In this paper we consider the following four methods for approximating f0(a):

(I) �f 0ðaÞ ¼ f ðxkÞ�f ðxk�1Þ
xk�xk�1

(simple secant approach).
(II) �f 0ðaÞ ¼ f ðxkÞ�f ðyk�1Þ

xk�yk�1
(better secant approach).

(III) �f 0ðaÞ ¼ f ðxkÞ�f ðzk�1Þ
xk�zk�1

(best secant approach).
(IV) �f 0ðaÞ ¼ N02ðxkÞ (Newton’s interpolatory approach), where N2(t) = N2(t;xk,zk�1,yk�1) is Newton’s interpolatory polyno-

mial of second degree, set through three best available approximations (nodes) xk, zk�1 and yk�1.

The main idea in constructing methods with memory consists of the calculation of the parameter c = ck as the iteration
proceeds by the formula ck ¼ �1=�f 0ðaÞ for k = 1,2, . . .. It is assumed that the initial estimate c0 should be chosen before start-
ing the iterative process, for example, using one of the ways proposed in [16, p. 186]. Regarding the above methods (I)–(IV),
we present the following four formulas:

ck ¼ �
xk � xk�1

f ðxkÞ � f ðxk�1Þ
ðMethodðIÞÞ; ð22Þ

ck ¼ �
xk � yk�1

f ðxkÞ � f ðyk�1Þ
ðMethodðIIÞÞ; ð23Þ

ck ¼ �
xk � zk�1

f ðxkÞ � f ðzk�1Þ
ðMethodðIIIÞÞ; ð24Þ

ck ¼ �
1

N02ðxkÞ
ðMethodðIVÞÞ; ð25Þ

where

N02ðxkÞ ¼
d
dt

N2ðtÞ
	 


t¼xk

¼ d
dt
ðf ðxkÞ þ f ½xk; zk�1�ðt � xkÞ þ f ½xk; zk�1; yk�1�ðt � xkÞðt � zk�1ÞÞ

	 

t¼xk

¼ f ½xk; zk�1� þ f ½xk; zk�1; yk�1�ðxk � zk�1Þ ¼ f ½xk; yk�1� þ f ½xk; zk�1� � f ½zk�1; yk�1�: ð26Þ

Since ck is recursively calculated as the iteration proceeds using (I)–(IV), the function u given by (2) should be replaced by

euðxkÞ ¼
f ðxk þ ckf ðxkÞÞ � f ðxkÞ

ckf ðxkÞ
: ð27Þ

Substituting euðxkÞ instead of u in (11), we state the following derivative free family of three-point methods with
memory,

yk ¼ xk � f ðxkÞeuðxkÞ
;

zk ¼ yk � hðuk; vkÞ f ðykÞeuðxkÞ
; ðk ¼ 0;1; . . .Þ;

xkþ1 ¼ zk � f ðzkÞ
f ½zk ;yk �þf ½zk ;yk ;xk �ðzk�ykÞþf ½zk ;yk ;xk ;wk �ðzk�ykÞðzk�xkÞ

;

8>>>><
>>>>:

ð28Þ

J. Džunić et al. / Applied Mathematics and Computation 218 (2012) 4917–4927 4921
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where eu is defined by (27), wk = xk + ckf(xk), and h is a two-valued weight function that satisfies (4). We use the term method
with memory following Traub’s classification [16, p. 8] and the fact that the evaluation of the parameter ck depends on the
data available from the current and the previous iterative step. Accelerated methods obtained by recursively calculated free
parameter may also be called self-accelerating methods.

5. Convergence theorem

To estimate the convergence speed of the family of three-point methods with memory (28), where ck is calculated using
one of the formulas (22)–(25), we will use the concept of the R-order of convergence introduced by Ortega and Rheinboldt
[10]. In our analysis the following assertion is needed (see [1, p. 287]).

Theorem 2. Let (IM) be an iterative method with memory which generates a sequence {xk} that converges to the zero a, and let
ej = xj � a. If there exists a nonzero constant g and nonnegative numbers mi, 0 6 i 6 n, such that the inequality

jekþ1j 6 g
Yn

i¼0

jek�ijmi ; k P kðfekgÞ;

holds, then the R-order of convergence of iterative method (IM), denoted with OR(IM,a), satisfies the inequality

ORððIMÞ;aÞP s�;

where s⁄ is the unique positive zero of the equation

snþ1 �
Xn

i¼0

misn�i ¼ 0: ð29Þ

The proofs of the convergence theorems are given with rigor. However, rigor in itself is not the main object of our analysis
and we simplify our proofs omitting those cumbersome details which are of marginal importance and do not influence the
final result. For example, to avoid higher order terms in some relations, which make only ‘‘parasite’’ parts of these relations/
developments and do not influence the convergence order, we employ the notation used in Traub’s book [16]: If {fk} and {gk}
are zero-sequences and

fk

gk
! C;

where C is a nonzero constant, we shall write

fk ¼ OðgkÞ or f k � CðgkÞ:

Now we state the convergence theorem for the family (28) of three-point methods with memory.

Theorem 3. Let the varying parameter ck in the iterative scheme (28) be recursively calculated by expressions given in (22)–(25).
If an initial approximation x0 is sufficiently close to the zero a of f, then the R-order of convergence of the three-point methods (28)–
(22), (28)–(23), (28)–(24) and (28)–(25) with memory is at least 2ð2þ

ffiffiffi
5
p
Þ;9;10 and 11, respectively.

Proof. Let {xk} be a sequence of approximations generated by an iterative method (IM). If this sequence converges to the zero
a of f with the R-order OR((IM),a) P r, we will write

ekþ1 � Dk;rer
k; ek ¼ xk � a; ð30Þ

where Dk,r tends to the asymptotic error constant Dr of (IM) when k ?1. Hence

ekþ1 � Dk;r Dk�1;rer
k�1

� �r ¼ Dk;rD
r
k�1;re

r2

k�1: ð31Þ

According to the error relations (14), (5) and (21) with the self-accelerating parameter c = ck, we can write the corre-
sponding error relations for the methods (28) with memory

ek;y ¼ yk � a � c2ð1þ ckf 0ðaÞÞe2
k ; ð32Þ

ek;z ¼ zk � a � ak;4ð1þ ckf 0ðaÞÞ2e4
k ; ð33Þ

ekþ1 ¼ xkþ1 � a � ak;8ð1þ ckf 0ðaÞÞ4e8
k : ð34Þ

The expressions of ak,4 and ak,8 are evident from (5) and (21) and depend on the iteration index since ck is recalculated in each
iteration. As mentioned above, we omitted higher order terms in (32)–(34).

Let e = x � a. Using Taylor’s series about the root a, we obtain
f ðxÞ ¼ f 0ðaÞðeþ c2e2 þ c3e3 þ c4e4 þ Oðe5ÞÞ: ð35Þ

This relation will be used for different values of x. Now we determine the R-order of convergence of the family (28) for all
approaches (22)–(25) applied to the calculation of ck.
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Method(I), ck is calculated by (22):
Using the development (35) for x = xk and x = xk�1, we obtain

f ðxkÞ � f ðxk�1Þ
xk � xk�1

¼ f 0ðaÞ ðek þ c2e2
k þ c3e3

k þ 	 	 	Þ � ðek�1 þ c2e2
k�1 þ c3e3

k�1 þ 	 	 	Þ
ek � ek�1

¼ f 0ðaÞ 1þ c2ðek þ ek�1Þ þ c3 e2
k þ ekek�1 þ e2

k�1

� �
þ 	 	 	

� �
¼ f 0ðaÞ 1þ c2ðek þ ek�1Þ þ O e2

k�1

� �� �
:

According to this, we calculate ck by (22) and find

1þ ckf 0ðaÞ ¼ c2ðek þ ek�1Þ þ Oðe2
k�1Þ � c2ek�1: ð36Þ

Substituting (36) in (34) yields

ekþ1 � ak;8c4
2e

4
k�1e

8
k : ð37Þ

Hence we can find a constant g so that the inequality

jekþ1j 6 gjekj4jek�1j4 ð38Þ

holds. Starting from (38) and having in mind Theorem 2 and (29), we form the quadratic equation r2 � 8r � 4 = 0. The posi-
tive root r� ¼ 2ð2þ

ffiffiffi
5
p
Þ � 8:47 of this equation determines the lower bound of the R-order of convergence of the method

(28)–(22).
Method (II), ck is calculated by (23):
Similar to the derivation of (36), we calculate ck by the more accurate secant method (23) and obtain

1þ ckf 0ðaÞ ¼ c2ðek þ ek�1;yÞ þ Oðe2
k�1;yÞ � c2ek�1;y: ð39Þ

Assume that the iterative sequence {yk} has the R-order p, then, bearing in mind (30),

ek;y � Dk;pep
k � Dk;p Dk�1;rer

k�1

� �p ¼ Dk;pDp
k�1;re

rp
k�1: ð40Þ

Combining (30), (32), (39) and (40), we get

ek;y � c2ð1þ ckf 0ðaÞÞe2
k � c2ðc2ek�1;yÞe2

k � c2
2 Dk�1;pep

k�1

� �
Dk�1;rer

k�1

� �2 � c2
2Dk�1;pD2

k�1;re
2rþp
k�1 : ð41Þ

According to (30), (37) and (40), we obtain

ekþ1 � ak;8c4
2e

4
k�1;ye

8
k � ak;8c4

2 Dk�1;pep
k�1;y

� �4
Dk�1;rer

k�1

� �8 � ak;8c4
2D4

k�1;pD8
k�1;re

8rþ4p
k�1 : ð42Þ

By comparing exponents of ek�1 on the right-hand side of (40) and (41), and then on the right-hand side of (31) and (42),
we form the following system of equations

rp� 2r � p ¼ 0;
r2 � 8r � 4p ¼ 0;

�

with non-trivial solution p = 9/4 and r = 9. Therefore, the R-order of the methods with memory (28)–(23) is at least nine.
Method (III), ck is calculated by (24):
Considering the most accurate secant method (24), assume that the iterative sequence {zk} has the R-order s, that is,

ek;z � Dk;ses
k � Dk;s Dk�1;rer

k�1

� �s � Dk;sD
s
k�1;re

rs
k�1: ð43Þ

Proceeding in the similar way as for the Methods (I) and (II), we start from (24) and obtain

1þ ckf 0ðaÞ ¼ c2ðek þ ek�1;zÞ þ O e2
k�1;z

� �
� c2ek�1;z;

which leads to the error relations

ek;z � ak;4ð1þ ckf 0ðaÞÞ2e4
k � ak;4c2D2

k�1;sD
4
k�1;re

4rþ2s
k�1 ð44Þ

and

ekþ1 � ak;8ð1þ ckf 0ðaÞÞ4e8
k � ak;8c4

2D4
k�1;sD

8
k�1;re

8rþ4s
k�1 : ð45Þ

By comparing exponents of ek�1 appearing in two pairs of relations (43)–(44) and (31)–(45),we arrive at the system of
equations

rs� 4r � 2s ¼ 0;
r2 � 8r � 4s ¼ 0:

�

Since non-trivial solution of this system is given by s = 5 and r = 10, we conclude that the R-order of the methods with mem-
ory (28-III) is at least ten.
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Method (IV), ck is calculated by (25):
In view of (26) and (35) we have

N02ðxkÞ ¼ f ½xk; yk�1� þ f ½xk; zk�1� � f ½zk�1; yk�1�

¼ f ðxkÞ � f ðyk�1Þ
xk � yk�1

þ f ðxkÞ � f ðzk�1Þ
xk � zk�1

� f ðzk�1Þ � f ðyk�1Þ
zk�1 � yk�1

¼ f ðxkÞ � f ðyk�1Þ
ek � ek�1;y

þ f ðxkÞ � f ðzk�1Þ
ek � ek�1;z

� f ðzk�1Þ � f ðyk�1Þ
ek�1;z � ek�1;y

¼ f 0ðaÞ
ek � ek�1;y þ c2 e2

k � e2
k�1;y

� �
þ c3 e3

k � e3
k�1;y

� �
þ 	 	 	

ek � ek�1;y
þ

ek � ek�1;z þ c2 e2
k � e2

k�1;z

� �
þ c3 e3

k � e3
k�1;z

� �
þ 	 	 	

ek � ek�1;z

2
4

�
ek�1;z � ek�1;y þ c2 e2

k�1;z � e2
k�1;y

� �
þ c3 e3

k�1;z � e3
k�1;y

� �
þ 	 	 	

ek�1;z � ek�1;y

3
5

¼ f 0ðaÞ 1þ 2c2ek þ c3 ek�1;yek�1;z þ ekek�1;y þ ekek�1;z þ 2e2
k

� �
þ 	 	 	

� �
¼ f 0ðaÞð1þ c3ek�1;yek�1;z þ OðekÞÞ;

According to this and (25) we find

1þ ckf 0ðaÞ � c3ek�1;yek�1;z: ð46Þ

Using (46) and the previously derived relations, we obtain the error relations for the intermediate approximations

ek;y � c2ð1þ ckf 0ðaÞÞe2
k � c2c3ek�1;yek�1;ze2

k � c2c3 Dk�1;pep
k�1

� �
Dk�1;ses

k�1

� �
Dk�1;rer

k�1

� �2

� c2c3Dk�1;pDk�1;sD
2
k�1;re

2rþsþp
k�1 ; ð47Þ

and

ek;z � ak;4ð1þ ckf 0ðaÞÞ2e4
k � ak;4ðc3ek�1;yek�1;zÞ2e4

k � ak;4c2
3 Dk�1;pep

k�1

� �2 Dk�1;ses
k�1

� �2 Dk�1;rer
k�1

� �4

� ak;4c2
3D2

k�1;pD2
k�1;sD

4
k�1;re

4rþ2sþ2p
k�1 : ð48Þ

In the similar fashion we find the error relation for the final approximation within the considered iteration

ekþ1 � ak;8ð1þ ckf 0ðaÞÞ4e8
k � ak;8ðc3ek�1;yek�1;zÞ4e8

k � ak;8c4
3 Dk�1;pep

k�1

� �4 Dk�1;ses
k�1

� �4 Dk�1;rer
k�1

� �8

� ak;8c4
3D4

k�1;pD4
k�1;sD

8
k�1;re

8rþ4sþ4p
k�1 : ð49Þ

Comparing the error exponents of ek�1 in three pairs od relations (40)–(47), (43)–(48), (32)–(49), we form the system of
three equations in p, s and r

rp� 2r � ðpþ sÞ ¼ 0;
rs� 4r � 2ðpþ sÞ ¼ 0;
r2 � 8r � 4ðpþ sÞ ¼ 0:

8><
>:

Non-trivial solution of this system is p = 11/4, s = 11/2, r = 11 and we conclude that the lower bound of the R-order of the
methods with memory (28)–(25) is eleven.

In this way we have completed the analysis of all accelerating methods (22)–(25) so that the proof of Theorem 3 is
completed. h

6. Numerical examples

We have tested the family of three-point methods (11) using the programming package Mathematica with multiple-pre-
cision arithmetic. Apart from this family, several three-point iterative methods (IM) of optimal order eight presented in [2–
9,14,17,18], which also require four function evaluations, have been tested. For demonstration, we have selected four meth-
ods displayed below.

Three-point methods of Bi et al. [2]:

yk ¼ xk � f ðxkÞ
f 0 ðxkÞ

;

zk ¼ yk � gðukÞ f ðykÞ
f 0 ðxkÞ

;

xkþ1 ¼ zk � f ðxkÞþbf ðzkÞ
f ðxkÞþðb�2Þf ðzkÞ

	 f ðzkÞ
f ½zk ;yk �þf ½zk ;xk ;xk �ðzk�ykÞ

;

8>>><
>>>: ð50Þ

where b 2 R, uk = f(yk)/f(xk) and g(u) is a real-valued function satisfying
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gð0Þ ¼ 1; g0ð0Þ ¼ 2; g00ð0Þ ¼ 10; j g000ð0Þ j<1

.
Derivative free Kung–Traub’s family [8]:

yk ¼ xk � cf ðxkÞ2
f ðxkþcf ðxkÞÞ�f ðxkÞ

;

zk ¼ yk � f ðykÞf ðxkþcf ðxkÞÞ
½f ðxkþcf ðxkÞÞ�f ðykÞ�f ½xk ;yk �

; ðc 2 R; k ¼ 0;1; . . .Þ;

xkþ1 ¼ zk �
f ðykÞf ðxkþcf ðxkÞÞ yk�xkþ

f ðxk Þ
f ½xk ;zk �

� �
½f ðykÞ�f ðzkÞ�½f ðxkþcf ðxkÞÞ�f ðzkÞ�

þ f ðykÞ
f ½yk ;zk �

:

8>>>>><
>>>>>:

ð51Þ

Kung–Traub’s family with first derivative [8]:

yk ¼ xk � f ðxkÞ
f 0 ðxkÞ

;

zk ¼ yk � f ðxkÞf ðykÞ
½f ðxkÞ�f ðykÞ�2

f ðxkÞ
f 0 ðxkÞ

; ðk ¼ 0;1; . . .Þ;

xkþ1 ¼ zk � f ðxkÞf ðykÞf ðzkÞff ðxkÞ2þf ðykÞ½f ðykÞ�f ðzkÞ�g
½f ðxkÞ�f ðykÞ�2 ½f ðxkÞ�f ðzkÞ�2 ½f ðykÞ�f ðzkÞ�

f ðxkÞ
f 0 ðxkÞ

:

8>>><
>>>: ð52Þ

Sharma–Sharma’s method [14]:

yk ¼ xk � f ðxkÞ
f 0 ðxkÞ

;

zk ¼ yk �
f ðykÞ
f 0 ðxkÞ
	 f ðxkÞ

f ðxkÞ�2f ðykÞ
;

xkþ1 ¼ zk � 1þ f ðzkÞ
f ðxkÞ

� �
f ðzkÞf ½xk ;yk �

f ½xk ;zk �f ½yk ;zk �
:

8>>><
>>>: ð53Þ

The errors jxk � aj of approximations to the zeros, produced by (11), (50)–(52) and (53), are given in Tables 1 and 2, where
A(�h) denotes A � 10�h. These tables include the values of the computational order of convergence rc calculated by the for-
mula [11]

rc ¼
log jf ðxkÞ=f ðxk�1Þj

log jf ðxk�1Þ=f ðxk�2Þj
; ð54Þ

taking into consideration the last three approximations in the iterative process. We have chosen the following test functions:

f ðxÞ ¼ ex2þx cos x�1 sin pxþ x logðx sin xþ 1Þ; a ¼ 0; x0 ¼ 0:6;

f ðxÞ ¼ logð1þ x2Þ þ ex2�3x sin x; a ¼ 0; x0 ¼ 0:35:

f ðxÞ ¼ ex2þx cos x�1 sin pxþ x logðx sin xþ 1Þ; a ¼ 0; x0 ¼ 0:6; c ¼ �0:1

f ðxÞ ¼ logðx2 � 2xþ 2Þ þ ex2�5xþ4 sinðx� 1Þ; a ¼ 1; x0 ¼ 1:35; c ¼ �0:1

From Tables 1 and 2 and many tested examples we can conclude that all implemented methods converge very fast.
Although three-point methods from the family (11) produce the best approximations in the case of considered functions,
we cannot claim that, in general, they are better than other three-point methods of optimal order eight; numerous tests
show that the considered methods generate results of approximately same accuracy. From the last column of Tables 1
and 2 we can also conclude that the computational order of convergence rc, calculated by (54), matches very well the the-
oretical order.

The next numerical experiments were performed applying the family (28) of three-point methods with memory to the
same functions as above, with the same initial data (x0 and c0). Absolute values jxk � aj are displayed in Tables 3 and 4. Com-
paring results given in Tables 3 and 4 (methods with memory) with the corresponding results presented in Tables 1 and 2
(methods without memory), we observe considerable increase of accuracy of approximations produced by the methods with

Table 1
Three-point methods without memory.

Methods jx1 � aj jx2 � aj jx3 � aj rc (54)

(11) h(u,v) = (1 + u)/(1 � v), c = �0.1 0.649(�4) 0.497(�33) 0.586(�266) 8.000
(11) h(u,v) = 1 + u + v + v2 0.645(�4) 0.127(�32) 0.290(�262) 8.000
(11) h(u,v) = 1 + u + v + (u + v)2 0.658(�4) 0.421(�34) 0.117(�275) 7.999
(11) h(u,v) = u + 1/(1 � v) 0.645(�4) 0.127(�32) 0.284(�262) 8.000
(50), gðuÞ ¼ 1þ 4u

2�5u
0.166(�2) 0.221(�21) 0.221(�172) 7.999

(50), g(u) = 1 + 2u + 5u2 + u3 0.241(�2) 0.221(�19) 0.118(�155) 7.998
(51), c = 0.01 0.126(�2) 0.370(�23) 0.198(�187) 8.000
(52) 0.114(�2) 0.152(�23) 0.154(�190) 8.000
(53) 0.136(�2) 0.279(�23) 0.876(�189) 7.999
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memory. The quality of the approaches in calculating ck by (22)–(25) can also be observed from Tables 3 and 4: Newton’s
interpolation gives the best results, which was expected since it provides the highest order 11. The better approximation
(among xk�1, yk�1, zk�1) is applied in the secant approach (I), (II) or (III), the faster method is obtained. The computational
order of convergence, given in the last column of Tables 3 and 4, is not so close to the theoretical value of order as in the
case of methods without memory (see Tables 1 and 2), but it is still quite acceptable as a measure of convergence speed hav-
ing in mind that methods with memory have more complex structure dealing with information from two successive
iterations.

The R-order of convergence of the family (28) with memory is increased from 8 to 2ð2þ
ffiffiffi
5
p
Þ � 8:472, 9, 10 and 11, in

accordance with the quality of applied accelerating method given by (22)–(24) or (25). The increase of convergence order
is attained without any additional function calculations, which points to a very high computational efficiency of the pro-
posed methods with memory. Finally, note that the order of methods (28) with memory is higher than eight, but it does
not refute the Kung–Traub conjecture because this hypothesis is related only to the methods without memory such as (11).

Remark 3. From Tables 3 and 4 we notice that approximations produced by (28) using the weight functions
h(u,v) = 1 + u + v + v2 and h(u,v) = u + 1/(1 � v) are very close to each other. This similarity becomes clearer by observing
that uþ 1

1�v ¼ ð1þ uþ v þ v2Þ þ v3 þ 	 	 	.

f ðxÞ ¼ ex2þx cos x�1 sin pxþ x logðx sin xþ 1Þ; a ¼ 0; x0 ¼ 0:6; c0 ¼ �0:1

f ðxÞ ¼ logðx2 � 2xþ 2Þ þ ex2�5xþ4 sinðx� 1Þ; a ¼ 1; x0 ¼ 1:35; c0 ¼ �0:1

Table 2
Three-point methods without memory.

Methods jx1 � aj jx2 � aj jx3 � aj rc (54)

(11) h(u,v) = (1 + u)/(1 � v) 0.288(�5) 0.156(�41) 0.117(�331) 8.000
(11) h(u,v) = 1 + u + v + v2 0.479(�5) 0.208(�39) 0.262(�314) 8.000
(11) h(u,v) = 1 + u + v + (u + v)2 0.272(�5) 0.504(�43) 0.701(�345) 7.999
(11) h(u,v) = u + 1/(1 � v) 0.499(�5) 0.291(�39) 0.385(�313) 8.000
(50), gðuÞ ¼ 1þ 4u

2�5u
0.570(�4) 0.898(�31) 0.341(�245) 7.999

(50), g(u) = 1 + 2u + 5u2 + u3 0.622(�4) 0.106(�29) 0.772(�236) 7.999
(51), c = 0.01 0.877(�4) 0.218(�30) 0.314(�243) 7.999
(52) 0.845(�4) 0.169(�30) 0.426(�244) 7.999
(53) 0.782(�4) 0.832(�31) 0.136(�246) 7.999

Table 3
Families of three-point methods with memory.

Methods jx1 � aj jx2 � aj jx3 � aj rc (54)

h(u,v) = (1 + u)/(1 � v)

(28), (22) 0.649(�4) 0.264(�35) 0.161(�301) 8.481
(28), (23) 0.649(�4) 0.117(�39) 0.460(�359) 8.936
(28), (24) 0.649(�4) 0.177(�41) 0.222(�416) 9.980
(28), (25) 0.649(�4) 0.150(�47) 0.433(�525) 10.944

h(u,v) = 1/[(1 � u)(1 � v)]
(28), (22) 0.653(�4) 0.111(�35) 0.157(�304) 8.462
(28), (23) 0.653(�4) 0.140(�39) 0.208(�358) 8.939
(28), (24) 0.653(�4) 0.192(�41) 0.468(�416) 9.981
(28), (25) 0.653(�4) 0.157(�47) 0.680(�525) 10.944

h(u,v) = 1 + u + v + v2

(28), (22) 0.645(�4) 0.108(�34) 0.965(�296) 8.482
(28), (23) 0.645(�4) 0.943(�39) 0.615(�351) 8.962
(28), (24) 0.645(�4) 0.136(�40) 0.199(�407) 10.002
(28), (25) 0.645(�4) 0.138(�46) 0.198(�515) 10.987

h(u,v) = 1 + u + v + (u + v)2

(28), (22) 0.658(�4) 0.596(�36) 0.585(�307) 8.458
(28), (23) 0.658(�4) 0.759(�40) 0.833(�361) 8.931
(28), (24) 0.658(�4) 0.103(�41) 0.455(�421) 10.035
(28), (25) 0.658(�4) 0.103(�47) 0.275(�528) 10.971

h(u,v) = u + 1/(1 � v)
(28), (22) 0.645(�4) 0.108(�34) 0.944(�296) 8.482
(28), (23) 0.645(�4) 0.939(�39) 0.588(�351) 8.962
(28), (24) 0.645(�4) 0.135(�40) 0.182(�407) 10.002
(28), (25) 0.645(�4) 0.110(�46) 0.240(�516) 10.982
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Table 4
Families of three-point methods with memory.

Methods jx1 � aj jx2 � aj jx3 � aj rc (54)

h(u,v) = (1 + u)/(1 � v)
(28), (22) 0.288(�5) 0.481(�44) 0.433(�373) 8.486
(28), (23) 0.288(�5) 0.240(�47) 0.621(�426) 8.997
(28), (24) 0.288(�5) 0.135(�49) 0.181(�496) 10.081
(28), (25) 0.288(�5) 0.150(�54) 0.489(�600) 11.069

h(u,v) = 1/[(1 � u)(1 � v)]
(28), (22) 0.922(�6) 0.172(�47) 0.119(�402) 8.511
(28), (23) 0.922(�6) 0.243(�51) 0.744(�462) 9.006
(28), (24) 0.922(�6) 0.175(�53) 0.255(�535) 10.097
(28), (25) 0.922(�6) 0.194(�58) 0.836(�643) 11.094

h(u,v) = 1 + u + v + v2

(28), (22) 0.479(�5) 0.237(�41) 0.469(�350) 8.503
(28), (23) 0.479(�5) 0.539(�45) 0.944(�405) 9.006
(28), (24) 0.479(�5) 0.277(�47) 0.242(�472) 10.064
(28), (25) 0.479(�5) 0.293(�52) 0.180(�574) 11.061

h(u,v) = 1 + u + v + (u + v)2

(28), (22) 0.272(�5) 0.184(�44) 0.294(�377) 8.496
(28), (23) 0.272(�5) 0.260(�48) 0.138(�434) 8.979
(28), (24) 0.272(�5) 0.234(�50) 0.157(�504) 10.078
(28), (25) 0.272(�5) 0.268(�55) 0.473(�608) 11.054

h(u,v) = u + 1/(1 � v)
(28), (22) 0.499(�5) 0.332(�41) 0.815(�349) 8.503
(28), (23) 0.499(�5) 0.754(�45) 0.194(�403) 9.005
(28), (24) 0.499(�5) 0.381(�47) 0.580(�471) 10.063
(28), (25) 0.499(�5) 0.407(�52) 0.673(�573) 11.060
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