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a b s t r a c t

Using an interactive approach which combines symbolic computation and Taylor’s series, a
wide family of three-point iterative methods for solving nonlinear equations is con-
structed. These methods use two suitable parametric functions at the second and third step
and reach the eighth order of convergence consuming only four function evaluations per
iteration. This means that the proposed family supports the Kung–Traub hypothesis
(1974) on the upper bound 2m of the order of multipoint methods based on m + 1 function
evaluations, providing very high computational efficiency. Different methods are obtained
by taking specific parametric functions. The presented numerical examples demonstrate
exceptional convergence speed with only few function evaluations.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Multipoint iterative methods for solving nonlinear equations appeared for the first time in Ostrowski’s book [1] and then
they were extensively studied in Traub’s book [2] and some papers published in the 1960s and 1970s. This class of methods
has drawn a considerable attention in recent years, which led to the construction of many methods of this type. The reason
for the revived interest in this area is a nice property of multipoint methods to overcome theoretical limits of one-point
methods concerning the convergence order and computational efficiency, which is of great practical importance. Simply,
multipoint methods are primarily introduced with the aim to achieve as high as possible order of convergence using a fixed
number of function evaluations. This is closely connected to the optimal order of convergence in the sense of the Kung–Traub
hypothesis. Namely, studying the optimal convergence rate of multipoint methods, Kung and Traub [3] conjectured that
multipoint methods without memory for solving nonlinear equations, based on m + 1 function evaluations per iteration, have
the order of convergence at most 2m.

In this paper we develop a new family of very efficient three-point methods for solving nonlinear equations. This family
has the order of convergence eight and uses only four function evaluations per iteration. In this way, the optimal order of
convergence and optimal computational efficiency in the sense of the Kung–Traub conjecture are attained. The new family
was derived in a simple and elegant way and produces a variety of specific methods. The construction and convergence
analysis of this family are given in Section 2. The proposed family is tested on numerical examples and compared with
the existing three-point methods with optimal order eight (Section 3).
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2. New family of optimal three-point methods

Let a be a simple real root of a real function f : D � R ? R and let x0 be an initial approximation to a. We start with a naive
three-point method:

yk ¼ xk � f ðxkÞ
f 0 ðxkÞ

;

zk ¼ yk � f ðykÞ
f 0 ðykÞ

ðk ¼ 0;1; . . .Þ;

xkþ1 ¼ uðxkÞ ¼ zk � f ðzkÞ
f 0 ðzkÞ

:

8>>><
>>>:

ð1Þ

According to Traub’s Theorem 2.4 [2], this method has the order 2 � 2 � 2 = 8, but it requires six function evaluations per iter-
ation. We define the efficiency index I of a method (M) as I(M) = r1/h (see Traub [2]), where r is the order of convergence of the
method (M) and h is the number of function- and derivative-evaluation per iteration. The efficiency index of the three-point
method (1) is I(1) = 81/6 = 21/2, which is equal to that of Newton’s method. In fact, we do apply Newton’s method three times.

To improve the computational efficiency of the iterative method (1), we will modify the above scheme in order to de-
crease the number of function evaluations per iteration but keeping the order eight. Our approach consists of the elimination
of the derivatives f0(y) and f0(z) at the second and third step of (1) using the approximations

f 0ðyÞ ¼ f 0ðxÞ
pðsÞ ; f 0ðzÞ ¼ f 0ðxÞ

qðs; tÞ ; where s ¼ f ðyÞ
f ðxÞ ; t ¼

f ðzÞ
f ðyÞ ð2Þ

and p and q are some functions of one and two variables, respectively. We notice that the quantities s and t do not require
new information since they are expressed by the already calculated quantities. The functions p and q are called multiplicative
functions or multipliers.

We start from the scheme (1) and the approximations (2) and state the following family of three-point methods:

yk ¼ xk � f ðxkÞ
f 0 ðxkÞ

;

zk ¼ yk � pðskÞ f ðykÞ
f 0 ðxkÞ

ðk ¼ 0;1; . . .Þ;

xkþ1 :¼ uðxkÞ ¼ zk � qðsk; tkÞ f ðzkÞ
f 0 ðxkÞ

:

8>>>><
>>>>:

ð3Þ

The functions p and q should be determined in such way that the iterative method (3) attains the order eight. To do that,
we will use the method of undetermined coefficients and Taylor’s series about 0 for p(s) and about (0,0) for q(s, t), thus,

pðsÞ ¼ pð0Þ þ p0ð0Þsþ p00ð0Þ
2!

s2 þ p000ð0Þ
3!

s3 þ � � � ; ð4Þ

qðs; tÞ ¼ qð0;0Þ þ qsð0;0Þsþ qtð0;0Þt þ
1
2!

qssð0;0Þs2 þ 2qstð0;0Þst þ qttð0;0Þt2
� �

þ 1
3!

qsssð0;0Þs3 þ 3qsstð0; 0Þs2t þ 3qsttð0;0Þst2 þ qtttð0;0Þt3
� �

þ � � � ð5Þ

Here the subscripts denote the respective partial derivatives; for example, qsð0;0Þ ¼
@qðs;tÞ
@s

���
ðs;tÞ¼ð0;0Þ

; qstð0;0Þ ¼
@2qðs;tÞ
@s@t

���
ðs;tÞ¼ð0;0Þ

; etc:

Let ek = xk � a be the error at the kth iteration. For simplicity, we sometimes omit the iteration index and write e instead
of ek. The expressions of Taylor’s polynomials (in e) of the functions involved in (3) are cumbersome and lead to tedious
calculations which can be realized only by a computer program. To find the coefficients p(0),p0(0),p0 0(0),q(0,0), . . . ,qttt(0,0)
of the developments (4) and (5), we have used symbolic computation in the programming package Mathematica and an
interactive approach explained by the comments C1–C7 given below. We emphasize that all expressions can be easily
displayed using the presented program. In this way we avoid writing cumbersome relations and expressions, which are often
presented in papers devoted to this topic. Note that these complicated expressions are found by no means using a paper-
and-pencil methods but by a computer program.

First, let us introduce the following abbreviations used in the presented program.

ck = f(k)(a)/(k!f0(a)), e = x � a, e1 = u(x) � a.
fx = f(x), fy = f(y), fz = f(z), f1x = f0(x), f1a = f0(a),
p0 = p(0), p1 = p0(0), p2 = p00(0), p3 = p000(0),
q0 = q(0,0), qs = qs(0,0), qt = qt(0,0),
qss = qss(0,0), qst = qst(0,0), qtt = qtt(0,0),
qsss = qsss(0,0), qsst = qsst(0,0), qstt = qstt(0,0), qttt = qttt(0,0).
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Program (written in Mathematica)

From the expression of the error e1 ¼ x̂� a ¼ uðxÞ � a we observe that e1 is of the form

e1 ¼ uðxÞ � a ¼ a2e2 þ a3e3 þ a4e4 þ a5e5 þ a6e6 þ a7e7 þ a8e8 þ Oðe9Þ: ð6Þ

The iterative three-point method xk+1 = u(xk) will have the order of convergence equal to eight if we determine the coeffi-
cients of the developments appearing in (4) and (5) in such way that a2, a3, a4, a5, a6, a7 (in (6)) vanish. We find these coef-
ficients equalling shaded expressions in boxed formulas to 0.

Comment C1: First, to provide the fourth order of convergence of the iterative method consisting of the first two steps of
the iterative scheme (3), it is necessary to obtain the error v = z � a = O(e4). In other words, the coefficients b2 and b3 in the
expression v = b2e2 + b3e3 + b4e4 should vanish. From Out[b2] we have �1 + p0 = 0 so that we take p0 = 1 (given in the
shaded box) to eliminate b2.

Comment C2: From Out[a3] we have the equation 2 � p1 = 0 and we take p1 = 2 to vanish b3.
We continue in the similar way and from C3–C7 we find the remaining coefficients of the developments (4) and (5):

q0 ¼ 1; qs ¼ 2; qt ¼ 1; qs ¼ 2; qst ¼ 4;

p3 ¼ qsss ¼ c; p2 ¼ 4; qss ¼ 6; qtt; qsst; c arbitrary:

7614 J. Džunić et al. / Applied Mathematics and Computation 217 (2011) 7612–7619
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Remark 1. The relation in C6 does not deliver the unique coefficients. We take p3 = qsss = c, where c is an arbitrary
parameter, and derive the expression of a8 in the form given in C7. In practice, the choice c = 0 is preferable for simplicity. We
do not have to worry about the terms t2, st2 and t3 because they are of higher order and do not influence the order of
convergence (not greater than 8).

In this way we have proved the following assertion.

Theorem 1. If p and q are arbitrary real functions with Taylor’s series of the form

pðsÞ ¼ 1þ 2sþ 2s2 þ cs3 þ � � � ; ð7Þ

qðs; tÞ ¼ 1þ 2sþ t þ 3s2 þ 4st þ cs3 þ � � � ðc 2 RÞ; ð8Þ

then the family of three-point methods (3) has the order eight. It is assumed that the terms of higher order in (7) and (8), which
follow after the dots, can take arbitrary values.

Remark 2. The entries sk and tk in (2) are calculated using the already found quantities f(xk), f(yk) and f(zk) so that the total
number of function evaluations per iteration of the method (3) is four. According to this fact and Theorem 1, it follows that
the iterative method (3) is optimal in the Kung–Traub sense and has the efficiency index I(3) = 81/4 � 1.682.

The functions p and q in (3) can take many forms satisfying the conditions (7) and (8). In practice, it is reasonable to
choose p and q as simple as possible, for example, in the form of a rational function as follows:

pðsÞ ¼ 1þ ð2� bÞsð1þ sÞ
1� bsð1� sÞ ; ð9Þ

qðs; tÞ ¼ 2þ ð6þ c1Þs2 þ 2ðt þ c2Þ þ sð4þ 2c1 þ c3tÞ
2þ 2c1s� 3c1s2 þ c2t þ ð�8� 2c1 � 2c2 þ c3Þst

; ð10Þ

where b, c1, c2, c3 are arbitrary constants. For example, we give the following specific forms:

p1ðsÞ ¼ 1þ 2sþ 2s2; p2ðsÞ ¼ 1
1�2sþ2s2 ; p3ðsÞ ¼ 1þsþs2

1�sþs2 ;

q1ðs; tÞ ¼ 1þ 2sþ t þ 3s2 þ 4st; q2ðs; tÞ ¼ 2sþ 5
4 t þ 1

1þsþ3
4t

� �2
;

q3ðs; tÞ ¼ 1�4sþt
ð1�3sÞ2þ2st

; q4ðs; tÞ ¼ 1
1�2sþs2þ4s3�t :

ð11Þ

All functions except q2 and q4 follow from (9) and (10).

Remark 3. According to the comment C7, the asymptotical error constant (AEC, for brevity) of the method xk+1 = u(xk), given
by (6), is

AECð3Þ ¼ a8 ¼ lim
k!1

uðxkÞ � a
ðxk � aÞ8

¼ 1
6

c2ð3c2
2 � c3Þ 6c2c4 � 3c2

3ðqtt � 2Þ þ 3c2
2c3ð6qtt þ qsst � 34Þ þ c4

2 2qsss� 9ð3qtt þ qsst � 18Þð Þ
� �

and depends on arbitrary constants qtt(0,0), qsst(0,0) and qsss(0,0). However, this expression is correct if the Taylor series in
(4) and (5) are truncated to the displayed terms, that is, for p1 and q1 given in the list (11). For a particular pair of functions p
and q the asymptotical error constant a8 is given by a specific expression which can be determined directly by substituting p
and q in the iterative scheme (3). For example, choosing two pairs of functions (p2,q3) and (p3,q4) (listed in (11)) into the
iterative formula (3), using a standard convergence technique with the help of symbolic computation and Taylor’s series
we obtain

AECðð3Þ—p2—q3Þ ¼ c2ð3c2
2 � c3Þð17c4

2 � 6c2
2c3 þ c2

3 þ c2c4Þ;

AECðð3Þ—p3—q4Þ ¼ c2
2ðc2c2

3 þ 3c2
2c4 � c3c4 � 9c5

2Þ:

3. Numerical results

The family of three-point methods (3) have been tested on a number of nonlinear equations. The programming package
Mathematica 7 with multi-precision arithmetic (500 significant decimal digits) was employed to provide very high accuracy.
The new family (3) has been compared to the existing three-point methods (some of them are given below) which have the
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same convergence rate (eight) and require four function evaluations per iteration too. We consider that the comparison to
the methods having the efficiency index less than 81/4 is not necessary since these methods are not competitive. Instead, we
compared only methods of the same efficiency index 81/4.

3.1. Kung–Traub’s method (12) – version without derivatives

Using the inverse interpolatory polynomial of degree n � 1, Kung and Traub [3] derived two families of multipoint meth-
ods of arbitrary order of convergence 2n�1. Taking n = 4 the following derivative free three-point method of eighth order is
obtained:

yk ¼ xk � cf ðxkÞ2
f ðxkþcf ðxkÞÞ�f ðxkÞ

;

zk ¼ yk � f ðykÞf ðxkþcf ðxkÞÞ
f ðxkþcf ðxkÞÞ�f ðykÞð Þf ½xk ;yk �

ðk ¼ 0;1; . . .Þ;

xkþ1 ¼ zk �
f ðykÞf ðxkþcf ðxkÞÞ yk�xkþ

f ðxk Þ
f ½xk ;zk �

� �
ðf ðykÞ�f ðzkÞÞðf ðxkþcf ðxkÞÞ�f ðzkÞÞ

þ f ðykÞ
f ½yk ;zk �

;

8>>>>>><
>>>>>>:

ð12Þ

where c is a real parameter and f[x,y] = (f(x) � f(y))/(x � y) denotes a divided difference.

3.2. Kung–Traub’s method (13) – version with derivative

Taking n = 4 in the generalized iterative formula which uses the first derivative [3], the following eight-order method is
obtained:

yk ¼ xk � f ðxkÞ
f 0 ðxkÞ

;

zk ¼ yk �
f ðxkÞ2 f ðykÞ

f 0ðxkÞðf ðxkÞ�f ðykÞÞ2
ðk ¼ 0;1; . . .Þ;

xkþ1 ¼ zk � f ðxkÞ2 f ðykÞ
DðkÞyz

1
DðkÞxz

xk�zk

DðkÞxz

� 1
f 0 ðxkÞ

	 

� f ðykÞ

f 0 ðxkÞ DðkÞxy

� �2

" #
;

8>>>>>>><
>>>>>>>:

ð13Þ

where, for example, DðkÞxz ¼ f ðxkÞ � f ðzkÞ:

3.3. Three-point methods (14) of Bi, Wu and Ren

The eighth-order family of iterative methods proposed by Bi et al. [4] is given in the form:

yk ¼ xk � f ðxkÞ
f 0 ðxkÞ

;

zk ¼ yk � hðlkÞ
f ðykÞ
f 0 ðxkÞ

;

xkþ1 ¼ zk � f ðxkÞþbf ðzkÞ
f ðxkÞþðb�2Þf ðzkÞ

� f ðzkÞ
f ½zk ;yk �þf ½zk ;xk ;xk �ðzk�ykÞ

ðb 2 RÞ;

8>>>><
>>>>:

ð14Þ

where lk = f(yk)/f(xk), h(t) is a suitably chosen real-valued function and f ½z; x; x� ¼ f ½z;x��f 0 ðxÞ
z�x . We have tested two methods

belonging to the family (14), obtained by choosing two different forms of the function h (see Tables 2–5).

3.4. Three-point methods (15) of Wang and Liu

The eighth-order family of optimal iterative methods proposed by Wang and Liu [5] gives a number of specific methods
among which we have selected the following one:

yk ¼ xk � f ðxkÞ
f 0 ðxkÞ

;

zk ¼ xk � f ðxkÞ
f 0 ðxkÞ

f ðxkÞ�f ðykÞ
f ðxkÞ�2f ðykÞ

;

xkþ1 ¼ zk � f ðzkÞ
f 0ðxkÞ

1þ 4f ðzkÞ
f ðxkÞþaf ðzkÞ

h i
f ðxkÞ2

f ðxkÞ2�2f ðxkÞf ðykÞ�f ðykÞ2
þ f ðzkÞ

f ðykÞ

h i
ða 2 RÞ:

8>>>>><
>>>>>:

ð15Þ

Note that the first two steps make Ostrowski’s two-point method.

3.5. Three-point methods (16) of Neta and Petković

Using inverse interpolation and any optimal two-point method at the first two-steps, a family of three-point method of
order eight was presented in [6]. In particular, the use of King’s fourth-order method [7] gives
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Table 2
f ðxÞ ¼ e�x2þxþ2 � cosðxþ 1Þ þ x3 þ 1; a ¼ �1; x0 ¼ �0:3:

Methods jx1 � aj jx2 � aj jx3 � aj

Method (3)–p1–q1 6.32(�5) 2.97(�37) 7.00(�296)
Method (3)–p1–q2 2.64(�5) 2.37(�39) 9.94(�312)
Method (3)–p1–q3 2.18(�4) 8.63(�33) 5.27(�260)
Method (3)–p2–q1 4.92(�5) 4.61(�38) 2.70(�302)
Method (3)–p2–q2 4.39(�5) 1.40(�37) 1.51(�297)
Method (3)–p2–q3 2.42(�4) 2.24(�32) 1.18(�256)
Method (3)–p3–q1 5.72(�5) 1.43(�37) 2.22(�298)
Method (3)–p3–q2 3.39(�5) 1.77(�38) 9.74(�305)
Method (3)–p3–q3 2.28(�4) 1.32(�32) 1.71(�258)
Kung–Traub’s method (12), c = 0.02 1.50(�4) 1.80(�33)) 7.59(�265)
Kung–Traub’s method (13) 1.11(�4) 9.99(�35) 4.34(�275)
(14), h(t) = 1 + 2t + 5t2 + t3, b = 3 1.87(�4) 6.46(�33) 1.30(�260)
(14), h(t) = (1 � 2t � t2 + 4t3)�1, b = 3 1.18(�4) 1.35(�34) 3.90(�274)
Wang-Liu’s method (15), a = 0 7.16(�5) 3.47(�36) 1.06(�286)
Neta–Petkovi’c’s method (16), k = 2 1.79(�4) 3.50(�33) 7.59(�263)

Table 3
f(x) = x2 � (1 � x)25, a = 0.14373925929975369826. . ., x0 = 0.4.

Methods jx1 � aj jx2 � aj jx3 � aj

Method (3)–p1–q1 1.12(�3) 1.06(�16) 7.19(�121)
Method (3)–p1–q2 5.00(�3) 5.71(�12) 2.48(�83)
Method (3)–p1–q3 1.03(�3) 8.21(�18) 1.36(�130)
Method (3)–p2–q1 1.70(�3) 1.55(�15) 7.99(�112)
Method (3)–p2–q2 4.94(�3) 1.33(�12) 1.41(�89)
Method (3)–p2–q3 1.11(�3) 6.16(�17) 5.64(�123)
Method (3)–p3–q1 1.36(�3) 3.79(�16) 1.48(�116)
Method (3)–p3–q2 4.98(�3) 1.89(�12) 1.92(�87)
Method (3)–p3–q3 1.06(�3) 2.72(�17) 5.10(�126)
Kung–Traub’s method (12), c = 0.02 4.05(�3) 4.07(�14) 2.49(�102)
Kung–Traub’s method (13) 3.92(�3) 2.90(�14) 1.54(�103)
(14), h(t) = 1 + 2t + 5t2 + t3, b = 3 4.80(�4) 2.59(�19) 1.95(�141)
(14), h(t) = (1 � 2t � t2 + 4t3)�1, b = 3 6.57(�3) 1.35(�10) 5.13(�72)
Wang–Liu’s method (15), a = 0 1.59(�2) 1.52(�9) 3.71(�65)
Neta–Petkovi’c’s method (16), k = 2 2.25(�3) 1.48(�15) 3.49(�113)

Table 4
f(x) = e�x � arctan2x � 1, a = 0, x0 = 0.5.

Methods jx1 � aj jx2 � aj jx3 � aj

Method (3)–p1–q1 4.28(�2) 2.09(�20) 6.24(�159)
Method (3)–p1–q2 1.25(�2) 8.42(�19) 1.25(�147)
Method (3)–p1–q3 1.36(�3) 1.52(�24) 3.72(�192)
Method (3)–p2–q1 2.42(�2) 1.21(�14) 7.83(�113)
Method (3)–p2–q2 2.99(�3) 2.72(�23) 1.61(�183)
Method (3) p2–q3 3.24(�3) 1.50(�21) 3.38(�168)
Method (3)–p3–q1 4.77(�3) 4.14(�20) 1.47(�156)
Method (3)–p3–q2 1.09(�2) 1.92(�20) 9.46(�161)
Method (3)–p3–q3 4.72(�3) 2.98(�20) 8.04(�158)
Kung–Traub’s method (12), c = 0.02 2.72(�3) 3.97(�23) 8.71(�182)
Kung–Traub’s method (13) 3.33(�3) 2.52(�22) 2.91(�175)
(14), h(t) = 1 + 2t + 5t2 + t3, b = 3 0.562 9.49(�6) 2.60(�43)
(14), h(t) = (1 � 2t � t2 + 4t3)�1, b = 3 0.217 3.82(�8) 2.48(�62)
Wang–Liu’s method (15), a = 0 8.87(�3) 4.15(�18) 1.09(�140)
Neta–Petkovi’c’s method (16), k = 2 1.40(�2) 2.05(�17) 6.19(�136)

Table 1
Tested functions and initial approximations.

Example k Function fk Root a Initial approximations x0

1 e�x2þxþ2 � cosðxþ 1Þ þ x3 þ 1 �1 �0.3

2 x2 � (1 � x)25 0.1437392592. . . 0.4
3 e�x � arctan 2x � 1 0 0.5
4 Q12

j¼1ðx� jÞ 9 9.5

J. Džunić et al. / Applied Mathematics and Computation 217 (2011) 7612–7619 7617
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wk ¼ xk � f ðxkÞ
f 0 ðxkÞ

;

zk ¼ wk � f ðwkÞ
f 0ðxkÞ
� f ðxkÞþkf ðwkÞ

f ðxkÞþðk�2Þf ðwkÞ
; ðk 2 RÞ;

xkþ1 ¼ xk � f ðxkÞ
f 0ðxkÞ
þ Ak f ðxkÞ½ �2 � Bk f ðxkÞ½ �3;

8>>><
>>>:

ð16Þ

where

Bk ¼
1

Dk
f ðw; xÞD

k
f ðw; zÞf ½wk; xk�

� 1

Dk
f ðz; xÞD

k
f ðw; zÞf ½zk; xk�

þ 1

f 0ðxkÞDk
f ðz; xÞD

k
f ðw; zÞ

� 1

f 0ðxkÞDn
f ðw; xÞD

k
f ðw; zÞ

and

Ak ¼
1

Dk
f ðw; xÞf ½wk; xk�

� 1
f 0ðxkÞDn

f ðw; xÞ
� BkD

k
f ðw; xÞ

with the abbreviation Dk
f ðw; zÞ ¼ f ðwkÞ � f ðzkÞ:

Beside the aforementioned methods (12)–(16), we also tested different methods from the new family (3) choosing various
pairs (pi,qj) of multiplicative functions given by (11). Among many numerical experiments, we have selected four examples
for demonstration presented in Table 1. The absolute errors jxk � aj in the first three iterations are given in Tables 2–5, where
A(�h) means A � 10�h.

Note that several recent papers [8–14] have presented new optimal three-point methods of the order eight. We have
found that they give results of approximately the same quality as the presented ones. For this reason and to save space, re-
sults of these methods are not included in Tables 2–5.

From the results displayed in Tables 2–5 and a number of numerical experiments, it can be concluded that the proposed
multipoint method (3) is competitive with existing three-point methods of optimal order eight and possesses very fast con-
vergence for good initial approximations. All tested variants of (3) demonstrated similar behavior for various pairs (pi,qj) of
multiplicative functions given by (11). We emphasize a convenient property of this family that it allows the construction of a
variety of methods with different forms.

The computational order of convergence, evaluated by the approximate formula

~r � log jf ðxkþ1Þ=f ðxkÞj
log jf ðxkÞ=f ðxk�1Þj

;

Table 5
f ðxÞ ¼W12ðxÞ ¼

Q12
j¼1ðx� jÞ; a ¼ 9; x0 ¼ 9:5:

Methods jx1 � aj jx2 � aj jx3 � aj

Method (3)–p1–q3 7.69(�3) 5.75(�16) 6.46(�121)
Method (3)–p2–q3 5.69(�3) 4.65(�17) 1.02(�129)
Method (3)–p3–q3 6.48(�3) 1.40(�16) 7.29(�126)
Kung–Traub’s method (12), c = 0.02 2.32(�4) 1.78(�16) 5.58(�113)
Kung–Traub’s method (13) 0.162 3.67(�7) 4.68(�51)
(14), h(t) = 1 + 2t + 5t2 + t3, b = 3 0.158 2.40(�8) 1.59(�60)
(14), h(t) = (1 � 2t � t2 + 4t3)�1, b = 3 0.147 3.34(�8) 9.63(�60)
Wang–Liu’s method (15), a = 0 Converges to a = 8 — —
Neta–Petkovi’c’s method (16), k = 2 Converges to a = 10 — —

Fig. 1. The graph of Wilkinson-like polynomial W12.
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is very close to 8 (to at least the third decimal place) for the tested methods (3) and (12)–(16). This points that practical re-
sults coincide well with the theoretical result given in Theorem 1.

After an extensive experimentation, we could not find a specific iterative three-point method in the class of methods (3),
(12)–(16) and non-displayed three-point methods of optimal order eight presented in [8–14] which would be asymptotically
best for all tested nonlinear functions. A number of numerical examples showed only that one of the tested methods is better
for some test-functions, while some other is better for other functions. We could conclude that the convergence behavior of
the considered multipoint methods strongly depends on the structure of tested functions and the accuracy of initial
approximations.

Regarding the examples given in Table 1 we observe that all tested methods show a very fast convergence in Example 1.
The specific methods (3)–(pi,q2) are the best in Example 1 but they are not so good in Example 2. Bi–Wu–Ren’s method (14)
(both variants) produces results of (relatively) small accuracy in Examples 3 and 4. Kung–Traub’s method (13) gives worse
results in Example 4 than in the remaining examples. In Example 4 the combinations (3)–(pi,q3) give the best results, (3)–
(pi,q1) converge slowly at the beginning of iterative process, while (3)–(pi,q2) and (3)–(pi,q4) are of the same quality as
the methods (13) and (14). The method (15) converges to the root a = 8 and the method (16) converges to the root
a = 10. Note that the polynomial W12(x), considered in Example 4, is of Wilkinson’s type. It is known that polynomials of this
type are ill-conditioned and take very large values (in magnitude) in the neighborhood of the roots, see Fig. 1, causing that
most of root-solvers work with effort in solving equations of this type.

We end this paper with the remark concerning the claims of some authors that their methods are equal or better than
existing methods belonging to the same or similar classes. Such assertions are most frequently unjustified from theoretical
as well as practical point of view. Actually, it is possible that there are particular examples where some methods work better
than the others and vice versa. A more realistic estimate, confirmed by a number of numerical examples, is that multipoint
methods without memory of the same order and the same computational cost show a similar convergence behavior and pro-
duce results of approximately same accuracy. This equalized behavior is particularly valid when compared methods use
Newton-like or Steffensen-like methods in the first step.
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[6] B. Neta, M.S. Petković, Construction of optimal order nonlinear solvers using inverse interpolation, Appl. Math. Comput. 217 (2010) 2448–2455.
[7] R.F. King, A family of fourth order methods for nonlinear equations, SIAM J. Numer. Anal. 10 (1973) 876–879.
[8] W. Bi, H. Ren, Q. Wu, Three-step iterative methods with eight-order convergence for solving nonlinear equations, J. Comput. Appl. Math. 225 (2009)

105–112.
[9] A. Cordero, J.L. Hueso, E. Martinez, J.R. Torregrosa, New modifications of Potra-Pták’s method with optimal fourth and eighth orders of convergence, J.

Comput. Appl. Math. 234 (2010) 2969–2976.
[10] Y.H. Geum, Y.I. Kim, A multi-parameter family of three-step eighth-order iterative methods locating a simple root, Appl. Math. Comput. 215 (2010)

3375–3382.
[11] L. Liu, X. Wang, Eighth-order methods with high efficiency index for solving nonlinear equations, Appl. Math. Comput. 215 (2010) 3449–3454.
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