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a b s t r a c t

Two families of derivative free two-point iterative methods for solving nonlinear equations
are constructed. These methods use a suitable parametric function and an arbitrary real
parameter. It is proved that the first family has the convergence order four requiring only
three function evaluations per iteration. In this way it is demonstrated that the proposed
family without memory supports the Kung–Traub hypothesis (1974) on the upper bound
2n of the order of multipoint methods based on n + 1 function evaluations. Further acceler-
ation of the convergence rate is attained by varying a free parameter from step to step
using information available from the previous step. This approach leads to a family of
two-step self-accelerating methods with memory whose order of convergence is at least
2þ

ffiffiffi
5
p
� 4:236 and even 2þ

ffiffiffi
6
p
� 4:449 in special cases. The increase of convergence

order is attained without any additional calculations so that the family of methods with
memory possesses a very high computational efficiency. Numerical examples are included
to demonstrate exceptional convergence speed of the proposed methods using only few
function evaluations.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Multipoint iterative methods for solving nonlinear equations are of great practical importance since they overcome the-
oretical limits of one-point methods concerning the convergence order and computational efficiency. Although this type of
root-finding methods were extensively studied in Traub’s book [1] and some papers and books published in the 1960s and
1970s (see, e.g., [2–7]), the interest for multipoint methods has renewed in the first decade of the 21st century.

The main goal and motivation in constructing root-solvers is to achieve as high as possible convergence order consuming
as small as possible function evaluations. In the case of multipoint methods, this requirement is closely connected with re-
sults of Kung and Traub [6] who conjectured that the order of convergence of any multipoint method without memory, con-
suming n + 1 function evaluations per iteration, cannot exceed the bound 2n (called optimal order). Multipoint methods with
this property are usually called optimal methods. An extensive list of optimal methods can be found, for example, in [8].
Defining the computational efficiency of a root-finding method by the efficiency index E = r1/h, where r is the order of conver-
gence and h is the number of function evaluations per iteration (see [2, p. 20]), optimal computational efficiency is 2n/(n+1) for
optimal methods. Therefore, the efficiency index of optimal two-point methods is 22/3 � 1.587.

Let a be a simple real root of a real function f: D � R ? R and let x0 be an initial approximation to a. In many practical
situations it is preferable to avoid calculations of derivatives of f. For example, a classical Steffensen’s method [9]
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xkþ1 ¼ xk �
f ðxkÞ2

f ðxk þ f ðxkÞÞ � f ðxkÞ
ðk ¼ 0;1; . . .Þ;

which is obtained from Newton’s method

xkþ1 ¼ xk �
f ðxkÞ
f 0ðxkÞ

ðk ¼ 0;1; . . .Þ

by substituting the derivative f 0(xk) by the ratio f ðxkþf ðxkÞÞ�f ðxkÞ
f ðxkÞ

, is an example of a derivative free root-finding method.

The efficiency index of Steffensen’s method is 21/2 � 1.414, the same as that of Newton’s method. Its computational effi-
ciency can be improved by using derivative free two-point optimal methods of the fourth order, as shown by Kung and Traub
[6]. Recently, Ren et al. [10] proposed the following one-parameter family of derivative free two-point methods of the fourth
order,

yk ¼ xk �
f ðxkÞ

f ½xk; zk�
; xkþ1 ¼ yk �

f ðykÞ
f ½xk; yk� þ f ½yk; zk� � f ½xk; zk� þ aðyk � xkÞðyk � zkÞ

; ð1Þ

where zk ¼ xk þ f ðxkÞ; f ½x; y� ¼ f ðxÞ�f ðyÞ
x�y denotes a divided difference, and a is a real parameter.

In this paper we consider another derivative free two-point families of methods without and with memory. We prove that
the order of convergence is four for methods without memory and asymptotically 2þ

ffiffiffi
5
p
� 4:236 for methods with memory

and even 2þ
ffiffiffi
6
p
� 4:449 in a special case. From a theoretical as well as practical point of view, this means that the presented

methods are competitive or even better than existing optimal two-point methods. The presented derivative free methods are
useful for finding roots of a function f when the calculation of derivatives of f is complicated and expensive.

In Section 2 we construct derivative free two-point methods of optimal order four. The first step is Steffensen-like meth-
od, while a suitable approximation of the first derivative is used in the second step to reduce a number of function evalu-
ations. In this way the order of convergence four is reached by only three function evaluations, which means that these
methods are optimal in the sense of the Kung–Traub conjecture. Further improvement of convergence rate is considered
in Section 3. A family of two-point methods with memory is constructed by varying a free parameter from step to step using
only available information. Accelerating the convergence rate from 4 to 2þ

ffiffiffi
5
p
� 4:236 (asymptotically) without any new

calculations, the computational efficiency of these methods is improved comparing to the methods without memory. This
theoretical result is confirmed by numerical examples, two of which are presented in Section 4. A comparison with other
methods of the same type, performed in Section 4, has shown that the proposed methods are competitive or even better than
existing two-point optimal methods.

2. Derivative free optimal two-point methods

Let

u1ðxÞ ¼
f ðxÞ � f ðx� bf ðxÞÞ

bf ðxÞ ;

where b is an arbitrary real constant. Upon expanding f(x � bf(x)) into a Taylor series about x, we arrive at

u1ðxÞ ¼ f 0ðxÞ � b
2

f ðxÞf 00ðxÞ þ Oðf ðxÞ2Þ:

Hence, we obtain an approximation to the derivative f0(x) in the form

f 0ðxÞ � u1ðxÞ ¼
f ðxÞ � f ðx� bf ðxÞÞ

bf ðxÞ : ð2Þ

Note that the approximation f 0ðxÞ � f ðxþbf ðxÞÞ�f ðxÞ
bf ðxÞ , used in [1, p. 178], gives the same results as the methods based on (2) and

considered in the sequel.
To construct derivative free two-point methods of optimal order, let us start from the doubled Newton method

yk ¼ xk � f ðxkÞ
f 0 ðxkÞ

xkþ1 ¼ yk �
f ðykÞ
f 0 ðykÞ

8<: ðk ¼ 0;1; . . .Þ: ð3Þ

It is well known that the above iterative scheme is inefficient and our primary aim is to improve computational efficiency.
We also wish to substitute derivatives f0(xk) and f0(yk) by convenient approximations. The latter requirement can be attained
at the first step using the approximation (2) to f0(xk). The derivative f0(yk) in the second step will be approximated by
u2(x) = u1(x)/h(u,v), where h(u,v) is a differentiable function that depends on two real variables

u ¼ f ðyÞ
f ðxÞ ; v ¼ f ðyÞ

f ðx� bf ðxÞÞ :
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Therefore,

f 0ðxkÞ � u1ðxkÞ ¼
f ðxkÞ � f ðxk � bf ðxkÞÞ

bf ðxkÞ
; ð4Þ

f 0ðykÞ � u2ðxkÞ ¼
u1ðxkÞ

hðuk;vkÞ
; uk ¼

f ðykÞ
f ðxkÞ

; vk ¼
f ðykÞ

f ðxk � bf ðxkÞÞ
: ð5Þ

Now we start from the iterative scheme (3) and using (4) and (5) we construct the following family of two-point methods

yk ¼ xk � f ðxkÞ
u1ðxkÞ

xkþ1 ¼ yk � hðuk;vkÞ f ðykÞ
u1ðxkÞ

8<: ðk ¼ 0;1; . . .Þ: ð6Þ

The function h should be determined in such a way that the order of convergence of the two-point method (6) is four.
Throughout this paper ek = xk � a denotes the error of approximation calculated in the kth iteration. In our convergence

analysis we will omit sometimes the iteration index k for simplicity. A new approximation xk+1 to the root a will be denoted
with x̂. Let us introduce the errors

e ¼ x� a; d ¼ y� a; ê ¼ x̂� a:

We will use Taylor’s expansion about the root a to express f(x), f(x � bf(x)) and f(y) as series in e. Then we represent d and ê by
Taylor’s polynomials in e.

Assume that x is sufficiently close to the root a of f, then u and v are close enough to 0. Let us represent a real two-valued
function h appearing in (6) by Taylor’s series about (0,0) in a linearized form,

hðu; vÞ ¼ hð0;0Þ þ huð0; 0Þuþ hvð0;0Þv ; ð7Þ

where hu and hv denote partial derivatives of h with respect to u and v. It can be proved that the use of partial derivatives of
higher order does not provide faster convergence (greater than four).

The expressions of Taylor’s polynomials (in e) of functions involved in (6) are cumbersome and lead to tedious calculations,
which needs the use of computer. If a computer is employed anyway, it is reasonable to perform all calculations necessary in
finding the convergence rate using a symbolic computation, as done in this paper. Such an approach was used in [11]. There-
fore, instead of the presentation of explicit expressions in a convergence analysis we use symbolic computation in the pro-
gramming package Mathematica to find candidates for h. If necessary, intermediate expressions can be always displayed
during this computation using the program given below, although their presentation is most frequently of academic interest.

We will find the coefficients h(0,0), hu(0,0), hv(0,0) of the development (7) using a simple program in Mathematica and an
interactive approach explained by the comments COM-1, COM-2 and COM-3. First, let us introduce the following abbrevi-
ations used in this program.

ak = f (k)(a)/(k!f0(a)), e = x � a, e1¼ ê ¼ x̂� a; b ¼ b,
fx = f (x), fxi = f(x � bf(x)), fi = [f (x) � f(x � bf(x))]/(bf (x)),
fy = f (y), f1a = f0(a), h0 = h(0,0), hu = hu(0,0), hv = hv(0,0).

Program (written in Mathematica)

fx=f1a�(e+a2�e^2+a3�e^3+a4�e^4);
fxi=f1a�((e-b�fx)+a2�(e-b�fx)^2+a3�(e-b�fx)^3);
fi=Series[(fx-fxi)/(b�fx), {e,0,2}];
d=e-b�fx^2�Series [1/(fx-fxi), {e,0,2}];
fy=f1a�(d+a2�d^2+a3�d^3);
u=Series[fy/fx,{e,0,2}]; v=Series[fy/fxi,{e,0,2}];
e1=d-(h0+hu�u+hv�v)�fy/fi//Simplify; C2=Coefficient[e1,e^2]
COM-1:
h0=1; C3=Coefficient[e1,e

^
3]//Simplify

COM-2:
hu=1; hv=1; C4=Coefficient[e1,e

^
4]//Simplify

COM-3: Out½C4� ¼ �a2ð�1þ bf 1aÞða3ð�1þ bf 1aÞ þ a22ð5� 5bf 1aþ b2f 1a2ÞÞ

Comment COM-1: From the expression of the error e1¼ ê ¼ x̂� a we observe that ê is of the form

ê ¼ x̂� a ¼ C2e2 þ C3e3 þ C4e4 þ Oðe5Þ: ð8Þ

The iterative two-point methods (6) will have the order of convergence equal to four if we determine the coefficients of the
development appearing in (7) so that C2 and C3 (in (8)) vanish. We find these coefficients equalling shaded expressions in
boxed formulas to 0. First, from Out[C2] we take h0 = h(0,0) = 1 and then calculate C3.
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Comment COM-2: From Out[C3] we see that the term b2f0(a) can be eliminated only if we choose hu = hu = hu(0,0) = 1. With
this value the coefficient C3 will vanish taking hv = hv = hv(0,0) = 1.

Comment COM-3: Substituting the entries h(0,0) = hu(0,0) = hv(0,0) = 1 in the expression of e1 (=ê), we obtain

ê ¼ x̂� a ¼ a2ð1� bf 0ðaÞÞ a2
2 5� 5bf 0ðaÞ þ b2f 0ðaÞ2
� �

� a3ð1� bf 0ðaÞÞ
� �h i

e4 þ Oðe5Þ;

or, using the iteration index,

ekþ1 ¼ xkþ1 � a ¼ a2ð1� bf 0ðaÞÞ a2
2 5� 5bf 0ðaÞ þ b2f 0ðaÞ2
� �

� a3ð1� bf 0ðaÞÞ
� �h i

e4
k þ Oðe5

kÞ: ð9Þ

Therefore, to provide the fourth order of convergence of the two-point methods (6), it is necessary to choose a two-valued
function h so that its truncated developments (7) satisfies

hð0;0Þ ¼ huð0;0Þ ¼ hvð0;0Þ ¼ 1: ð10Þ

According to the above analysis we can formulate the following convergence theorem.

Theorem 1. Let h(u,v) be a differentiable two-valued function that satisfies the conditions h(0,0) = hu(0,0) = hv(0,0) = 1. If an
initial approximation x0 is sufficiently close to the root a of a function f, then the convergence order of the family of two-point
methods (6) is equal to four.

Let us stop for a while to study the choice of the function h in (6). Considering (10), we see that the simplest form of the
function h is obviously

hðu;vÞ ¼ 1þ uþ v : ð11Þ
Let us note that any function of the form h(u,v) = 1 + u + v + g(u,v), where g is a differentiable function such that

g(0,0) = gu(0,0) = gv(0,0) = 0, satisfies the condition (10). For example, we can take g(u,v) = cuv (c is a parameter),
g(u,v) = v (p1u + � � � + pmum) or g(u,v) = u(q1v + � � � + qsvs), and so on. However, from a practical point of view, we should take
forms of as low as possible computational cost.

Another example is the function

hðu;vÞ ¼ 1þ u
1� v : ð12Þ

It is easy to check that it satisfies the conditions (10). A more general (but more complicated) two-parameter function
h(u,v) = (1 + u + au2)/(1 � v + bv2) also satisfies this condition. The more convenient choices are

hðu;vÞ ¼ 1
1� u—v and hðu;vÞ ¼ ð1þ uÞð1þ vÞ:

Finally, substituting

hðu;vÞ ¼ 1
ð1� uÞð1� vÞ

in (6) gives the Kung–Traub method (28) considered in Section 4.

Remark 1. The family of two-point methods (6) requires three function evaluations and has the order of convergence four.
Therefore, this family is optimal in the sense of the Kung–Traub conjecture and possesses the computational efficiency
E(6) = 41/3 � 1.587.

Remark 2. According to (9), the asymptotic error constant of the family (6) is

C4ðaÞ ¼ lim
k!1

xkþ1 � a
ðxk � aÞ4

¼ a2ð1� bf 0ðaÞÞ a2
2ð5� 5bf 0ðaÞ þ b2f 0ðaÞ2Þ � a3ð1� bf 0ðaÞÞ

� �
:

However, this expression is valid if the Taylor series of h given by (7) is truncated to the displayed members. Obviously, it
holds for the function h defined by (11). For a particular function h, the asymptotic error constant C4(a) is given by a specific
expression. For example, choosing h(u,v) = (1 + u)/(1 � v) (formula (12)) we find the asymptotic error constant

C4ðaÞ ¼ a2ð1� bf 0ðaÞÞ2ða2
2ð3� bf 0ðaÞÞ � a3Þ: ð13Þ

Remark 3. Since d = a2(1 � bf0(a))e2 + O(e3), it is easy to show that the asymptotic error constant C4(a) always contains the
factor 1 � bf0(a), that is,

C4ðaÞ ¼ ð1� bf 0ðaÞÞWða2; a3; f 0ðaÞÞ; ð14Þ
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where W is a non-zero constant depending on a2, a3, f0(a). This fact is a very important in developing the corresponding two-
point methods with memory, see Section 3.

Remark 4. We speak about the family (6), since the choice of various functions h satisfying the conditions (10) and a param-
eter b gives a variety of two-point methods.

Remark 5. The statement fi = Series[(fx-fxi)/(b�fx),{e,0,2}] in the above program gives

f ðxkÞ � f ðxk � bf ðxkÞÞ
bf ðxkÞ

¼ f 0ðaÞ 1þ a2ð2� bf 0ðaÞÞek þ Oðe2
kÞ

� �
; ð15Þ

which will be utilized in Section 3.

3. Two-point methods with memory

Following Traub’s classification [1], the two-point methods (6) belong to the class of methods without memory. Recall
that a multipoint method with memory reuses old information, for example, some entries from the previous iteration. In this
section we will improve the convergence rate of the family (6) using an old idea given in [1, p. 186] consisting of varying the
parameter b as the iteration proceeds.

Considering the error relation (9) and having in mind the form of the asymptotic error constant (14), we observe that the
order of convergence of the two-point family (6) could be increased from 4 to 5 taking b = 1/f0(a). However, in practice we
have no information on the exact value f0(a) and this idea cannot be fully realized. Instead of that, we can vary b from step to
step using information available from the previous step and exceed the order 4 without using any new function evaluations.
By defining b recursively as the iteration proceeds, we obtain two-point methods with memory corresponding to (6). Such
methods may also be called self-accelerating methods.

From the previous discussion, it is clear that we are forced to estimate b by an approximation of 1/f0(a) using available
data. We present two methods.

Method (I): Following (2) we estimate

bk ¼
bk�1f ðxk�1Þ

f ðxk�1Þ � f ðxk�1 � bk�1f ðxk�1ÞÞ
ðk ¼ 1;2; . . .Þ ð16Þ

starting from b0. The initial value b0 may be chosen in various ways; we found by practical experiments that the choice of
small entry (in magnitude), for example, b0 = 10�2 or less, gives satisfactory results in practice. Since

f ðxÞ � f ðx� bf ðxÞÞ
bf ðxÞ ! f 0ðxÞ when b! 0;

it may be expected that bk, defined by (16), will quickly approach f0(a) in the course of iterative process, especially in latter
iterations, if the initial approximation x0 is reasonable close to the root a.

Using recursively calculated parameter bk, we define the following two-step methods with memory

yk ¼ xk � f ðxkÞ
u1ðxk ;bkÞ

xkþ1 ¼ yk � hðuk;vkÞ f ðykÞ
u1ðxk ;bkÞ

8<: ðk ¼ 0;1; . . .Þ; ð17Þ

where

u1ðxk;bkÞ :¼ f ðxkÞ � f ðxk � bkf ðxkÞÞ
bkf ðxkÞ

and bk is calculated by (16).
To estimate the order of convergence of the two-point methods (17) with memory, we will use the relations (14)–(16).

First, C4 given by (14) (this quantity is not a constant now) is rewritten in the form

eC4 ¼ ð1� bkf 0ðaÞÞ eWkða2; a3; f 0ðaÞ; bkÞ: ð18Þ

It can be observed from the convergence analysis that the parameter bk always appears multiplied by f0(a). Putting
qk = bkf0(a), we may rewrite (18) as

eC4 ¼ ð1� qkÞ eWkða2; a3; qkÞ: ð19Þ

From (15) and (16) we find

M.S. Petković et al. / Applied Mathematics and Computation 217 (2010) 1887–1895 1891
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bk ¼
1

f 0ðaÞ 1þ a2ð2� qk�1Þek�1 þ Oðe2
k�1Þ

� � ¼ 1
f 0ðaÞ 1� a2ð2� qk�1Þek�1 þ Oðe2

k�1Þ
� �

:

Hence

1� bkf 0ðaÞ ¼ 1� qk ¼ a2ð2� qk�1Þek�1 þ Oðe2
k�1Þ: ð20Þ

In a limiting process when xk ? a, the quantity eWkða2; a3; qkÞ in (19) does not vanish and tends to a constant. Using this
fact and (20) we can write the following error relation for the two-point methods (17),

ekþ1 ¼ xkþ1 � a ¼ eC4e4
k þ Oðe5

kÞ ¼ ð1� qkÞ eWkða2; a3; qkÞe4
k þ Oðe5

kÞ; ð21Þ

giving

ekþ1 ¼ a2ð2� qk�1Þ eWkða2; a3; qkÞe4
k ek�1 þ Oðe5

kÞ:

Hence, when xk ? a,

ekþ1 � e4
k ek�1; ð22Þ

where the denotation c � d means that c = O(d).

Method (II): We may approximate the parameter b using the secant approach, that is,

b�k ¼
xk � xk�1

f ðxkÞ � f ðxk�1Þ
� 1

f 0ðaÞ : ð23Þ

Then we can state the following family of two-point methods with memory,

yk ¼ xk � f ðxkÞ
u1ðxk ;b

�
kÞ

xkþ1 ¼ yk � hðuk;vkÞ f ðykÞ
u1ðxk ;b

�
kÞ

8<: ðk ¼ 0;1; . . .Þ; ð24Þ

where

u1ðxk;b
�
kÞ :¼ f ðxkÞ � f ðxk � b�kf ðxkÞÞ

b�kf ðxkÞ

and bk is calculated by (23). In a similar way as in Section 2 for the family (6), we can derive the error relation for the family
of methods (24),

ekþ1 ¼ xkþ1 � a ¼ C�4e4
k þ Oðe5

kÞ ¼ ð1� b�kf 0ðaÞÞW�kða2; a3; q�kÞe4
k þ Oðe5

kÞ; q�k ¼ b�kf 0ðaÞ: ð25Þ

Using a Taylor series about a, we arrive at

f ðxkÞ ¼ f 0ðaÞek þ
1
2

f 00ðaÞe2
k þ O e3

k

� �
and hence

f ðxkÞ � f ðxk�1Þ
xk � xk�1

¼ f 0ðaÞ þ 1
2
ðek þ ek�1Þf 00ðaÞ þ O e2

k�1

� �
:

Then

1� b�kf 0ðaÞ ¼ 1� f 0ðaÞ
f 0ðaÞ þ 1

2 ek þ ek�1ð Þf 00ðaÞ þO e2
k�1

� �¼ 1� 1� ðek þ ek�1Þf 00ðaÞ
2f 0ðaÞ þO e2

k�1

� �	 

¼ ðek þ ek�1Þf 00ðaÞ

2f 0ðaÞ þO e2
k�1

� �
:

Substituting the expression of 1� b�kf 0ðaÞ in the error relation (25) leads again to the relation (22).
To estimate the convergence rate of the two-step methods (17) and (24), we will use the concept of the R-order of con-

vergence introduced by Ortega and Rheiboldt [12] and the following assertion (see [13, p. 287]).

Theorem 2. If the errors of approximations ej = xj � a obtained in an iterative root-finding process IP satisfy

ekþ1 �
Yn

i¼0

ek�ið Þmi ; k P kðfekgÞ;

then the R-order of convergence of IP, denoted with OR(IP,a), satisfies the inequality

ORðIP;aÞP s�;

where s* is the unique positive solution of the equation

snþ1 �
Xn

i¼0

misn�i ¼ 0: ð26Þ

Now we can state the convergence theorem of the two-point methods (17) and (24) with memory.
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Theorem 3. If an initial approximation x0 is sufficiently close to the root a of a function f, then the R-order of convergence of the
family of two-point methods (17) and (24) is at least 2þ

ffiffiffi
5
p

.

Proof. Using Theorem 2 for n = 1, m0 = 4, m1 = 1, according to (22) and (26) we form the quadratic equation

s2 � 4s� 1 ¼ 0:

The lower bound of the R-order of the methods (17) and (24) is determined by the unique positive root s� ¼ 2þ
ffiffiffi
5
p
� 4:236

of this equation. h

The choice of h(u,v) = (1 + u)/(1 � v) in (17) and (24) provides more accurate approximations compared to the function
h(u,v) = 1 + u + v (see, for example, Tables 1 and 2). In fact, the following assertion is valid.

Theorem 4. If an initial approximation x0 is sufficiently close to the root a of a function f and h(u,v) = (1 + u)/(1 � v), then the R-
order of convergence of the family of two-point methods (17) and (24) is at least 2þ

ffiffiffi
6
p
� 4:449.

Proof. From (14) we see that the asymptotic error constant C4(a) for h(u,v) = (1 + u)/(1 � v) contains the factor (1 � bf0(a))2.
Since 1 � bkf0(a) = O(ek�1) (see (20)), from a relation similar to (21) we obtain

ekþ1 � e4
ke2

k�1:

Hence, according to Theorem 2 and (26), it follows that the R-order of the families (17) and (24), with h(u,v) = (1 + u)/(1 � v),
is at least s� ¼ 2þ

ffiffiffi
6
p
� 4:449, where s* is the positive root of the equation s2 � 4s � 2 = 0. h

Remark 6. The R-order at least 2þ
ffiffiffi
6
p

can also be achieved dealing with the function h(u,v) = (1 + u)(1 + v + v2) and some
more complicated functions.

Remark 7. The fact that the order 2þ
ffiffiffi
5
p

of the families (17) and (24) is greater than 4 (Theorem 3) does not mean that the
Kung–Traub conjecture is refuted. Recall that this conjecture holds only for multipoint methods without memory, while the
iterative formulas (17) and (24) define the methods with memory.

Table 1
f(x) = exsin 5x � 2, x0 = 1.5, a = 1.363973180263712. . ..

Two-point methods jx1 � aj jx2 � aj jx3 � aj jx4 � aj

(6) h = 1 + u + v, b = 0.01 1.70(�2) 6.41(�8) 2.27(�29) 3.57(�115)
(17) h = 1 + u + v, b0 = 0.01 1.70(�2) 2.91(�8) 1.08(�34) 8.35(�146)
(24) h = 1 + u + v, b0 = 0.01 1.70(�2) 2.35(�9) 1.03(�38) 5.63(�163)
(6) h ¼ 1þu

1�v ; b ¼ 0:01 8.36(�3) 4.85(�9) 6.98(�34) 2.98(�133)

(17) h ¼ 1þu
1�v ; b0 ¼ 0:01 8.36(�3) 1.83(�9) 4.51(�41) 3.79(�180)

(24) h ¼ 1þu
1�v ; b0 ¼ 0:01 8.36(�3) 1.93(�10) 2.12(�44) 2.04(�195)

Ostrowski IM (27) 6.40(�3) 2.53(�9) 7.39(�35) 5.41(�137)
Kung–Traub IM (28) 1.68(�2) 1.11(�7) 3.96(�28) 6.45(�110)
Jarratt IM (29) 6.39(�3) 2.82(�9) 1.24(�34) 4.67(�136)
Maheshwari IM (30) 2.57(�2) 2.95(�7) 1.51(�26) 1.02(�103)
Ren–Wu–Bi IM (1), a = 0,x0 = 1.4a 1.85(�2) 3.31(�4) 9.35(�12) 5.42(�42)

a The Ren–Wu–Bi method does not converge in 100 iterative steps for x0 = 1.5.

Table 2
f(x) = (x � 2)(x10 + x + 1)e�x�1, x0 = 2.1, a = 2.

Two-point methods jx1 � aj jx2 � aj jx3 � aj jx4 � aj

(6) h = 1 + u + v, b = 0.01 1.01(�3) 7.84(�11) 2.93(�39) 5.68(�153)
(17) h = 1 + u + v, b0 = 0.01 1.01(�3) 5.01(�11) 2.23(�42) 3.13(�175)
(24) h = 1 + u + v, b0 = 0.01 1.01(�3) 4.00(�11) 6.60(�43) 1.92(�177)
(6) h ¼ 1þu

1�v ; b ¼ 0:01 3.29(�4) 3.66(�13) 5.59(�49) 3.04(�192)

(17) h ¼ 1þu
1�v ; b0 ¼ 0:01 3.29(�4) 2.00(�13) 5.20(�55) 4.69(�240)

(24) h ¼ 1þu
1�v ; b0 ¼ 0:01 3.29(�4) 1.45(�13) 7.63(�56) 1.13(�243)

Ostrowski IM (27) 1.72(�3) 3.13(�10) 3.49(�37) 5.43(�145)
Kung–Traub IM (28) 7.56(�3) 6.80(�7) 4.88(�23) 1.29(�87)
Jarratt IM (29) 1.75(�3) 3.42(�10) 5.11(�37) 2.54(�144)
Maheshwari IM (30) 5.27(�3) 1.59(�7) 1.45(�25) 9.97(�98)
Ren–Wu–Bi IM (1), a = 0 2.66(�2) 2.09(�3) 1.26(�6) 2.53(�19)
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Remark 8. The values of bk approximated by (16) and (23) have interesting geometric interpretation. In both cases �bk

approaches �1/f0(a). Recall that �1/f0(a) determines the slope of the normal to the tangent line to the curve y = f(x) at the
point [a,0]. Therefore, �bk tends to the tangent of the angle of this normal to the x axis.

According to Theorems 3 and 4 we conclude that iterative adjustment of a parameter b leads to the increase of conver-
gence speed of the two-point methods considered. Since this acceleration of convergence is achieved without any new func-
tion evaluations, we conclude that the computational efficiency of the proposed methods (17) and (24) with memory is
increased compared to the basic methods (6) without memory. Numerical results presented in Section 4 evidently confirm
the increase of convergence speed of the family of two-point methods (17) and (24).

4. Numerical results

In this section we demonstrate the convergence behavior of the proposed families (6), (17) and (24) of two-point methods
with and without memory. For comparison, in our numerical experiments we also tested the derivative free methods (1) and
several two-point iterative methods (IM) reviewed below. For simplicity, we omit the iteration index and introduce the New-
ton correction w(x) (after Newton) and a divided difference by

wðxÞ ¼ f ðxÞ
f 0ðxÞ ; f ½x; y� ¼ f ðxÞ � f ðyÞ

x� y
:

Ostrowski’s method [2]

y ¼ x�wðxÞ; x̂ ¼ y� f ðyÞ
f 0ðxÞ �

f ðxÞ
f ðxÞ � 2f ðyÞ : ð27Þ

Kung–Traub’s method [6]

y ¼ x� bf ðxÞ2

f ðxþ bf ðxÞÞ � f ðxÞ ; x̂ ¼ y� f ðyÞf ðxþ bf ðxÞÞ
f ðxþ bf ðxÞÞ � f ðyÞ½ �f ½x; y� : ð28Þ

Note that the family of two-point methods (28) is a special case (n = 2) of derivative free multipoint family of methods of
arbitrary order of convergence 2n requiring n + 1 function evaluations, see [6]. The family (28) can be obtained as a special
case of the family (6) taking h(u,v) = [(1 � u) (1 � v)]�1. Another optimal multipoint methods of arbitrary order of conver-
gence were considered in [14].

Jarratt’s method [3]

x̂ ¼ x� 1
2

wðxÞ þ f ðxÞ
f 0ðxÞ � 3f 0 x� 2

3 wðxÞ
� � : ð29Þ

Maheshwari’s method [15]

x̂ ¼ x�wðxÞ f x�wðxÞð Þ½ �2

f ðxÞ2
� f ðxÞ

f x�wðxÞð Þ � f ðxÞ

( )
: ð30Þ

The listed methods, including the Ren–Wu–Bi family (1) and the proposed methods (6), (17) and (24), have the efficiency
index at least 41/3 � 1.587. We did not insert numerical results obtained by iterative methods of lower computational effi-
ciency since these methods are not competitive and their lower rank is predictable. Another optimal two-point methods of
the fourth order with the efficiency index 41/3 were considered in [16–22], but the cited papers do not exhaust all sources.

For demonstration, among many numerical examples we selected two examples implemented in the programming pack-
age Mathematica by the use of multi-precision arithmetic.

Example 1. We tested the proposed methods (6), (17) and (24) with b = b0 = 0.01 and choosing two forms (11) and (12) of
the function h, the family (1) for a = 0 and the two-point methods (27)–(30) listed above. These methods were applied to the
function

f ðxÞ ¼ ex sin 5x� 2

to approximate its root a = 1.363973180263712. . .. The absolute values of the errors of the approximations xk in the first four
iterations are displayed in Table 1, where A(�h) means A 	 10�h. All methods used the common initial approximation
x0 = 1.5, except the Ren–Wu–Bi method (1) (see the remark *) below Table 1) which shows a divergent behavior in the first
100 iterations. For this reason, this method was applied for a closer approximation x0 = 1.4.

Example 2. The two-point methods employed in Example 1 were also applied to the function

f ðxÞ ¼ ðx� 2Þðx10 þ xþ 1Þe�x�1
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to approximate its root a = 2. In this test we used the common initial approximation x0 = 2.1. The obtained results are pre-
sented in Table 2.

According to the results presented in Tables 1 and 2 and a number of numerical examples, we can conclude that the deriv-
ative free two-point methods (6) are competitive with existing optimal two-point methods of the fourth order. Even better,
the families of methods (17) and (24) with memory, based on recursively calculated parameter bk, are faster than the existing
methods. Since all of the tested methods have the same computational cost, it is evident that the methods (17) and (24) are
most efficient.

Comparing the fourth order methods (1) and (6) we notice that the main advantage of the proposed family (6) is the pos-
sibility of acceleration of convergence by varying a parameter b. The lack of a corrector (as a parameter b in (6)) in the iter-
ative formula (1) leads to the divergence of the method (1) in Example 1 (for various values of a parameter a in a wide range)
and relatively modest result in Example 2.

Our concluding remark is concerned with an important problem appearing in practical application of multipoint methods.
As emphasized in [14], a fast convergence, one of the advantages of multipoint methods, can be attained only if initial
approximations are sufficiently close to the sought roots; otherwise, it is not possible to realize the expected convergence
speed in practice. For this reason, applying multipoint root-finding methods, a special attention should be paid to finding
good initial approximations. We note that an efficient procedure for finding sufficiently good initial approximations was re-
cently proposed by Yun [23]. For illustration, simple statements in the programming package Mathematica, applied to the
function from Example 2 and the interval [1,5],

f[x_]=(x-2)(x^(10)+x + 1)�Exp[-x-1]; a = 1; b = 5; m = 5;
x0 = 0.5�(a + b+Sign[f[a]]�NIntegrate[Tanh[m�f[x]],{x, a, b}])

gives considerably good initial approximation x0 = 1.99857 to the root a = 2.
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