
Author's personal copy
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a b s t r a c t

The construction of a class of three-point methods for solving nonlinear equations of the
eighth order is presented. These methods are developed by combining fourth order meth-
ods from the class of optimal two-point methods and a modified Newton’s method in the
third step, obtained by a suitable approximation of the first derivative based on interpola-
tion by a nonlinear fraction. It is proved that the new three-step methods reach the eighth
order of convergence using only four function evaluations, which supports the Kung–Traub
conjecture on the optimal order of convergence. Numerical examples for the selected spe-
cial cases of two-step methods are given to demonstrate very fast convergence and a high
computational efficiency of the proposed multipoint methods. Some computational
aspects and the comparison with existing methods are also included.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let f be a real sufficiently smooth function, defined on an interval If � R which contains a simple root a of f. Although
extensively investigated in Traub’s book [14], multipoint iterative methods for solving a nonlinear equation f ðxÞ ¼ 0 have
drawn a considerable attention in the first decade of the 21st century, which led to the construction of many methods of
this type. These methods are primarily introduced with the aim to achieve as high as possible order of convergence using
a fixed number of function evaluations. Namely, as Traub proved in [14], an one-point iterative method can reach the order
of convergence at most p if it depends explicitly on the first p� 1 derivatives of f. However, multipoint methods do not use
derivatives of high order and overcome theoretical limits of one-point methods concerning the convergence order and com-
putational efficiency. Studying the optimal convergence rate of multipoint methods, Kung and Traub [9] stated the hypoth-
esis that multipoint methods without memory for solving nonlinear equations, based on mþ 1 function evaluations per iteration,
have the order of convergence at most 2m.

The main goal of this paper is to develop a general class of very efficient three-point methods for solving nonlinear equa-
tions. A new class of three-point methods has the order of convergence eight and uses only four function evaluations. In this
way, the optimal order of convergence and optimal computational efficiency in the sense of the Kung–Traub conjecture are
attained.

The paper is organized as follows. A new family of three-point methods of the optimal order eight is constructed in Sec-
tion 2 by combining optimal two-point fourth order methods and a modified Newton’s method in the third step. The mod-
ified Newton method is obtained using a suitable approximation to the first derivative of a function f in order to reduce the
number of function evaluations. The total number of function evaluations of the proposed three-point family is four so that
the optimal computational efficiency is 23=4 � 1:682. Numerical examples for the selected special cases of the proposed
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three-step methods are presented in Section 3. In this section, some computational aspects of the considered multipoint
methods and the comparison with existing methods are also given.

2. A new family of optimal three-step methods

Let us consider an m-point iterative method (IM) without memory which requires hðmÞ ¼ mþ 1 function evaluations per
iterative step (including derivatives of f, if they appear). According to the Kung–Traub conjecture, the order of convergence r
of such a method cannot exceed 2m. This bound is usually called optimal order of convergence and the corresponding mul-
tipoint method optimal method. Calculating the computational efficiency by the formula EðIMÞ ¼ r1=hðmÞ (see [11,14]), the opti-
mal computational efficiency is EðoÞm ðIMÞ ¼ 2m=ðmþ1Þ. For example, Newton’s method

xkþ1 ¼ NðxkÞ :¼ xk � uðxkÞ; uðxÞ ¼ f ðxÞ
f 0ðxÞ ;

is the optimal second order method with two function evaluations and the efficiency EðoÞ1 ¼ 21=2 � 1:414.
Let f be defined on an interval If � R and f 0 does not vanish on If , and assume that a simple root a of f is isolated in the

interval If . Let U2m ðm P 1Þ be a class of optimal m-point methods; it requires hðmÞ ¼ mþ 1 function evaluations and has the
optimal order r ¼ 2m, giving the optimal computational efficiency EðoÞm ðU2m Þ ¼ 2m=ðmþ1Þ. In this paper we construct a class U8 of
optimal three-point methods with the optimal order eight requiring four function evaluations. This class relies on optimal
two-point methods belonging to the class U4.

The first optimal two-point methods were developed by Ostrowski [11], Jarratt [6,7] and Kung and Traub [9]. Their good
convergence properties have led to enormously rapid development of new methods of this type at the beginning of this cen-
tury, see e.g., [1,3–5,8,12].

Assume that a real function p and its derivatives p0 and p00 are continues in the neighborhood of 0. A rather wide class of
optimal two-point methods can be obtained starting from the two-step iterative scheme

yk ¼ NðxkÞ ¼ xk � f ðxkÞ
f 0ðxkÞ

;

xkþ1 ¼ NðykÞ ¼ yk � f ðykÞ
f 0ðykÞ

;

8<
: ðk ¼ 0;1; . . .Þ;

and substituting the derivative f 0ðykÞ by its approximation f 0ðxkÞ=pðtkÞ, where tk ¼ f ðykÞ=f ðxkÞ and p is chosen so that it sat-
isfies the conditions pð0Þ ¼ 1; p0ð0Þ ¼ 2; jp00ð0Þj <1. In this way we obtain a family of two-point methods

yk ¼ NðxkÞ ¼ xk � f ðxkÞ
f 0ðxkÞ

;

xkþ1 ¼ yk � pðtkÞ f ðykÞ
f 0 ðxkÞ

; tk ¼ f ðykÞ
f ðxkÞ

;

8<
: ðk ¼ 0;1; . . .Þ: ð1Þ

Using the symbolic computation in the programming package Mathematica (Maple and Matlab are also convenient), it is easy
to prove that the family (1) has the optimal order four. We note that Chun [4] approximated f 0ðykÞ by f 0ðxkÞhðtkÞ, but the
approximation applied in (1) is slightly better since it directly (without any expansion of p) produces several existing optimal
two-point methods as follows:

(I) For p given by

pðtÞ ¼ 1þ bt
1þ ðb� 2Þt ðb 2 RÞ;

we obtain King’s fourth order family of two-point methods [7] (omitting the iterative indices)

Kðx; bÞ ¼ x� uðxÞ � f ðx� uðxÞÞ
f 0ðxÞ � f ðxÞ þ bf ðx� uðxÞÞ

f ðxÞ þ ðb� 2Þf ðx� uðxÞÞ : ð2Þ

King’s family produces the following special cases:
Ostrowski’s method [11], b ¼ 0:

Kðx; 0Þ ¼ x� uðxÞ � uðxÞf ðx� uðxÞÞ
f ðxÞ � 2f ðx� uðxÞÞ ; ð3Þ

Kou’s method [8], b ¼ 1:

Kðx; 1Þ ¼ x� f ðxÞ2 þ ½f ðx� uðxÞÞ�2

f 0ðxÞ½f ðxÞ � f ðx� uðxÞÞ� ; ð4Þ

Chun’s method [4], b ¼ 2:
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Kðx; 2Þ ¼ x� uðxÞ 1þ f ðx� uðxÞÞ
f ðxÞ þ 2 f ðx� uðxÞÞ½ �2

f ðxÞ2

( )
: ð5Þ

(II) Choosing

pðtÞ ¼ t2 þ ðc � 2Þt � 1
ct � 1

ðc 2 RÞ;

we construct the iterative function xcðx; yÞ,

y ¼ x� f ðxÞ
f 0 ðxÞ ;

xcðx; yÞ ¼ y� f ðyÞ
f 0 ðxÞ 1þ f ðyÞ½f ðyÞ�2f ðxÞ�

f ðxÞ½cf ðyÞ�f ðxÞ�

n o
;

8<
: ð6Þ

which defines a one parameter family of two-point methods xkþ1 ¼ xcðxk; ykÞ of the order four. Taking c ¼ 1 in (6), we obtain
Maheshvari’s method [10] as a special case,

MðxÞ ¼ x� uðxÞ ½f ðx� uðxÞÞ�2

f ðxÞ2
� f ðxÞ

f ðx� uðxÞÞ � f ðxÞ

( )
: ð7Þ

(III) In a limit case when t ! 0 the function

pðtÞ ¼ 1
t

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4t
p � 1

� �
;

provides the fourth order method proposed in [12]

EðxÞ ¼ x� 2uðxÞ
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4f ðx�uðxÞÞ

f ðxÞ

q : ð8Þ

Remark 1. The computational efficiency of optimal two-point methods is EðoÞ2 ðU4Þ ¼ 22=3 � 1:587.

Now we will construct a new family of three-step iterative methods having optimal order of convergence equal to eight.
For simplicity, we will sometimes omit iterative indices and denote a new approximation xkþ1 with x̂. Let uf 2 U4 denote an
iterative function from the class of optimal two-point iterative methods. Then the improved approximation x̂ to the root a
can be found by the following three-point iterative scheme:

ð1Þ y ¼ x� f ðxÞ
f 0 ðxÞ ;

ð2Þ z ¼ uf ðx; yÞ; uf 2 U4;

ð3Þ x̂ ¼ z� f ðzÞ
f 0 ðzÞ :

8>><
>>: ð9Þ

We note that the first two steps define an optimal two-point method from the class U4 with the order r1 ¼ 4 using the New-
ton method in the first step, while the third step is Newton’s method of the order r2 ¼ 2. The presented scheme is simple and
its convergence rate is equal to eight, which is a consequence of the following Traub’s theorem [14, Theorem 2.4]:

Theorem 1. Let g1 and g2 be iterative functions with the order of convergence r1 and r2, respectively. Then iterative function
GðxÞ ¼ g2ðg1ðxÞÞ defines a composite iterative method of the order r1 � r2.

However, the three-point method (9) requires five function evaluations per iterative step so that it is not optimal in the
sense of Kung–Traub’s conjecture. To reduce the number of function evaluations and thus increase the computational effi-
ciency, we will approximate f 0ðzÞ using available data. Since we have four values f ðxÞ; f 0ðxÞ; f ðyÞ and f ðzÞ, one of the ways is
to approximate f by the Hermite interpolation polynomial h of degree 3 in the nodes x; y; z and use the approximation
f 0ðzÞ � h0ðzÞ in the third step of the iterative scheme (9). The described approach was applied in [13] where a general class
of optimal n-point methods is constructed for arbitrary n P 3.

In this paper we will approximate f 0ðzÞ by applying the interpolation of f by a nonlinear fraction

wðtÞ ¼ a1 þ a2ðt � xÞ þ a3ðt � xÞ2

1þ a4ðt � xÞ ða2 � a1a4 – 0Þ: ð10Þ

From (10) we have

w0ðtÞ ¼ a2 � a1a4 þ a3ðt � xÞð2þ a4ðt � xÞÞ
ð1þ a4ðt � xÞÞ2

: ð11Þ
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The unknown coefficients a1; . . . ; a4 will be determined from the conditions:

ðiÞ wðxÞ ¼ f ðxÞ; ðiiÞ wðyÞ ¼ f ðyÞ; ðiiiÞ wðzÞ ¼ f ðzÞ; ðivÞ w0ðxÞ ¼ f 0ðxÞ: ð12Þ

Putting t ¼ x into (10) and (11) and using (12-i) and (12-iv), we get a1 ¼ f ðxÞ and a2 ¼ f 0ðxÞ þ a4a1 ð¼ w0ðxÞÞ. The coefficients
a3 and a4 are obtained from the system of two linear equations formed by using the remaining two conditions (12-ii) and
(12-iii), and putting y and z into (10). We get

a3 ¼
f 0ðxÞf ½y; z� � f ½x; y�f ½x; z�
xf ½y; z� þ yf ðzÞ�zf ðyÞ

y�z � f ðxÞ
; a4 ¼

a3

f ½x; y� þ
f 0ðxÞ � f ½x; y�
ðy� xÞf ½x; y� ; ð13Þ

where f ½x; y� ¼ ðf ðyÞ � f ðxÞÞ=ðy� xÞ denotes a divided difference. Finally, we find

a2 ¼ f 0ðxÞ þ a4a1 ¼ f 0ðxÞ þ a4f ðxÞ; recalling that a1 ¼ f ðxÞ: ð14Þ

Replacing the obtained coefficients into (11) and putting t ¼ z, we get the explicit formula for w0ðzÞ which uses only already
calculated quantities f ðxÞ; f 0ðxÞ; f ðyÞ, and f ðzÞ. In this way, the nonlinear fraction w and its derivative w0 are completely
determined by (10)–(14).

Setting w0ðzÞ (calculated by (11) putting t ¼ z) into (9) instead of f 0ðzÞ, we state a new family of three-point methods: Gi-
ven an initial approximation x0, the improved approximations xk ðk ¼ 1;2; . . .Þ are calculated by the three-step procedure

yk ¼ xk � f ðxkÞ
f 0 ðxkÞ

;

zk ¼ uf ðxk; ykÞ; ðk ¼ 0;1; . . .Þ:
xkþ1 ¼ zk � f ðzkÞ

w0 ðzkÞ
;

8>><
>>: ð15Þ

The proposed class of root-solvers requires only four function evaluations. We will see later that its order of convergence is
eight, that is, the family of three-point methods (15) is optimal.

Remark 2. There are other ways to approximate f 0ðzÞ using available data. For example, Bi et al. [2] used an approximation of
the second derivative f 00 and divided differences. However, in order to provide the optimal order equal to eight, this approach
must use only King’s method (2) in the first two step, that is, uf ¼ Kðx; bÞ. On the other hand, any optimal two-point method
uf 2 U4 can be applied in our algorithm (15), which is more general.

Many authors determine the order of convergence using a standard technique which mainly relies on the Taylor ser-
ies. In the case of multipoint methods, such an approach deals with rather cumbersome expressions so that their devel-
opment and manipulations with them most often require the use of computer. If a computer is employed anyway, it is
reasonable to determine the convergence rate using a symbolic computation, as done in this paper. If necessary, inter-
mediate expressions can be always printed during this computation, although their presentation is most frequently of
academic interest.

Using the Taylor series and symbolic computation in the programming package Mathematica (or Maple, Matlab), we can
find the order of convergence and the asymptotic error constant of the three-point methods (15). The following abbrevia-
tions are used in the program given below.

ck ¼ f ðkÞðaÞ=ðk!f 0ðaÞÞ; e ¼ x� a; e1 ¼ x̂� a,
fx ¼ f ðxÞ; fy ¼ f ðyÞ; fz ¼ f ðzÞ; f1x ¼ f 0ðxÞ; f1a ¼ f 0ðaÞ,
w1z ¼ w0ðzÞ (calculated by (11)–(14)).

Program (written in Mathematica):

fx ¼ f1a � ðeþ c2 � e^2þ c3 � e^3þ c4 � e^4Þ; f1x ¼ D½fx;e�;
u ¼ e� Series½fx=f1x;e;0;7 �; fy ¼ f1a � ðuþ c2 � u^2þ c3 � u^3þ c4 � u^4Þ;
v ¼ q � e^4; fz ¼ f1a � ðvþ c2 � v^2þ c3 � v^3þ c4 � v^4Þ; fxy ¼ ðfx� fyÞ=ðe� uÞ;
fxz ¼ ðfx� fzÞ=ðe� vÞ; fyz ¼ ðfy� fzÞ=ðu� vÞ; a1 ¼ fx;
a3 ¼ ððf1x � fyz� fxy � fxzÞÞ=ððe � ðfy� fzÞ þ u � fz� v � fyÞ=ðu� vÞ � fxÞ;
a4 ¼ a3=fxyþ ðf1x� fxyÞ=ððu� eÞ � fxyÞ; a2 ¼ f1xþ fx � a4 ;
w1z ¼ ða2� a1 � a4þ a3ðv� eÞ � ð2þ a4ðv� eÞÞÞ=ð1þ a4ðv� eÞÞ̂ 2; e1 ¼ v� fz=w1z==Simplify

Out½e1� ¼ q c2ðc4 þ qÞ � c2
3

� �
e8 þ O½e9� ð16Þ

The output (16) of the above program points to the eighth order of convergence of the family of three-point methods (15).
Taylor’s expansions used in the program assume sufficiently small e ¼ x� a, which means that the initial approximation
should be reasonably close to the root a. Altogether, we can state the following theorem.
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Theorem 2. If an initial approximation x0 is sufficiently close to the root a of a function f, then the convergence order of the family
of three-point methods (15) is equal to eight.

Remark 3. Since the number of function evaluations is hð3Þ ¼ 4 and the convergence order is 23 ¼ 8 for the considered fam-
ily of three-point methods (15), we conclude that the Kung–Traub conjecture is supported for m ¼ 3.

From (16) we observe that the asymptotic error constant (AEC) of the family of methods (15) is given by

AECð15Þ ¼ lim
k!1

ekþ1

e8
k

¼ q c2ðc4 þ qÞ � c2
3

� �
:

The AEC q should be determined for each particular two-point method uf applied in the iterative scheme (15). For example,
q ¼ AECð2Þ ¼ c3

2ð1þ 2bÞ � c2c3 for King’s two-point method (2) so that the AEC of the three-point method (15)–(2) in this
particular case is

AECðð15Þ � ð2ÞÞ ¼ c3
2ð1þ 2bÞ � c2c3

� �
c2 c4 þ c3

2ð1þ 2bÞ � c2c3
� �

� c2
3

� �
:

3. Computational aspects

In this section we demonstrate the convergence behavior of the proposed class of three-point methods (15) by presenting
numerical results for different two-point methods from the class U4. We have chosen the Ostrowski method (3), the King
family for particular values of parameter b ¼ 1 (Kou’s method (4)) and b ¼ 2 (Chun’s method (5)), the Maheshwari method
(7), and the method (8) developed in [12].

For comparison, we also tested two methods from the family of the eighth order methods recently proposed by Bi et al. in
[2], referred to as Method 1 and Method 2 in [2], a general class of n-point methods (for n ¼ 3) proposed by Petković [13],
taking King’s method for b ¼ 0 and b ¼ 1 (referred to as P-1 and P-2), and two almost forgotten families of Kung and Traub
stated in 1974, see [9]. These latter families are denoted in Tables 1 and 2 with K-T-version 1 (family without derivatives),
and K-T-version 2 (family with the first derivative).

For demonstration, among many numerical examples we selected two examples implemented in the programming pack-
age Mathematica by the use of multi-precision arithmetic. The tables of results also contain the computational order of con-
vergence, evaluated by the following formula (see [15])

~r � log jðxkþ1 � aÞ=ðxk � aÞj
log jðxk � aÞ=ðxk�1 � aÞj : ð17Þ

Table 1
f ðxÞ ¼ e�x2þxþ2 � cosðxþ 1Þ þ x3 þ 1; a ¼ �1; x0 ¼ �0:7:

Three-point methods jx1 � aj jx2 � aj jx3 � aj ~rð17Þ

(15)–(3) 5.64(�7) 1.35(�52) 1.42(�417) 8.00023
(15)–(4) 2.85(�9) 8.32(�72) 2.57(�571) 7.98773
(15)–(5) 3.96(�7) 5.57(�54) 8.54(�429) 7.99999
(15)–(7) 2.04(�7) 3.11(�56) 8.92(�447) 8.00015
(15)–(8) 9.97(�7) 1.38(�50) 1.86(�401) 8.00000
K-T-version 1 [9] 2.82(�7) 2.18(�55) 2.81(�440) 7.99990
K-T-version 2 [9] 2.45(�7) 5.73(�56) 5.07(�445) 8.00010
Bi-Method 1 [2] 7.87(�7) 4.47(�52) 4.86(�414) 7.99996
Bi-Method 2 [2] 1.19(�6) 1.69(�50) 2.92(�401) 7.99957
P-(1) [13] 2.92(�7) 1.02(�55) 2.16(�443) 8.00041
P-(2) [13] 1.11(�9) 3.67(�75) 5.05(�599) 8.00025

Table 2
f ðxÞ ¼ ln ðx2 þ xþ 2Þ � xþ 1; a ¼ 4:1525907367 . . . ; x0 ¼ 3:

Three-point methods jx1 � aj jx2 � aj jx3 � aj ~rð17Þ

(15)–(3) 3.29(�7) 2.92(�60) 1.12(�484) 8.00003
(15)–(4) 1.80(�6) 7.10(�54) 4.16(�433) 8.00000
(15)–(5) 5.24(�6) 7.52(�50) 1.35(�400) 8.00002
(15)–(7) 3.30(�6) 1.33(�51) 9.29(�415) 7.99997
(15)–(8) 8.20(�8) 1.74(�65) 7.06(�527) 8.00001
K-T-version 1 [9] 4.27(�6) 2.04(�50) 5.63(�405) 7.99984
K-T-version 2 [9] 4.39(�6) 2.62(�50) 4.29(�404) 7.99983
Bi-Method 1 [2] 9.18(�8) 9.85(�65) 1.73(�520) 8.00000
Bi-Method 2 [2] 4.72(�6) 2.51(�50) 1.63(�404) 7.99985
P-(1) [13] 6.85(�7) 2.34(�57) 4.39(�461) 7.99999
P-(2) [13] 2.58(�6) 2.18(�52) 5.66(�421) 7.99999
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Example 1. We applied the aforementioned methods to the test function

f ðxÞ ¼ e�x2þxþ2 � cosðxþ 1Þ þ x3 þ 1;

for finding its root which is near to x0 ¼ �0:7. The exact root is a ¼ �1. The absolute values of the errors of the approxima-
tions xk in the first three iterations are displayed in Table 1, where Að�hÞ means A� 10�h.

Example 2. The three-point methods employed in Example 1 were also applied to the function

f ðxÞ ¼ ln ðx2 þ xþ 2Þ � xþ 1;

to approximate its root a ¼ 4:15259073675715827499 . . .. In this test we used the common initial approximation x0 ¼ 3. The
obtained results are presented in Table 2.

Regarding the results given in Tables 1 and 2 and a number of numerical examples, we have concluded that the proposed
optimal three-point methods (15) are extremely fast and very efficient. Their computational efficiency

EðoÞ3 ðU8Þ ¼ 23=4 � 1:682 > EðoÞ2 ðU4Þ ¼ 22=3 � 1:587;

is higher than the efficiency of optimal two-point methods (see Remark 1). Two iterative steps are usually sufficient in solv-
ing most practical problems at present. The third iteration is given only to demonstrate remarkably fast convergence of the
considered root-solvers. From a comparison study, we have also concluded that the proposed family (15) and the eight-order
methods given in the papers [2,9,13] produce results of the approximately same quality.

Solving a number of nonlinear equations, we did not find a specific iterative function uf 2 U4 which would be approxi-
mately best for all tested nonlinear equations. All methods from the family (15) show good convergence behavior if initial
approximations are close to the roots, and the tested functions are not ‘‘pathological.” In such situations, the computational
order of convergence ~r, given by (17), perfectly matches the theoretical result given in Theorem 2.

Contrary, bad initial approximations can cause slower convergence of multipoint methods at the beginning of iterative
process. For this reason, the problem of finding good initial approximations is as equally important as the convergence rate
of root-finding methods. The determination of a good initial approximation is often more profitable than the implementation
of a very fast multipoint method with a bad starting approximation. Indeed, since multipoint methods have the form of a
predictor-corrector method, the predictor (usually Newton’s method) will not deliver a good approximation to the corrector
if the chosen initial approximation is not good enough. We draw a reader’s attention to an efficient method for determining
initial approximations of great accuracy, given by Yun [16] and used in our numerical experimentations. For illustration, let
us consider the function f ðxÞ ¼ ln ðx2 þ xþ 2Þ � xþ 1 (tested in Example 2) and a rather wide interval [0,6] containing a sim-
ple root of f. Using Yun’s approach [16] based on numerical integration and simple statements in the programming package
Mathematica

f½x� ¼ Log½x^2þ xþ 2� � xþ 1; a ¼ 0; b ¼ 6; n ¼ 20 ;
x0 ¼ 0:5 � ðaþ bþ Sign½f½a�� � NIntegrate½Tanh½n � f½x��; fx; a; bg�Þ

we find considerably good initial approximation x0 ¼ 4:15225 with the error jx0 � aj � 3:4� 10�4.
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