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ARTICLE INFO ABSTRACT

Keywords: New three-step derivative free families of three-point methods for solving nonlinear equa-
Nonlinear equations tions are presented. First, a new family without memory of optimal order eight, consuming
Multipoint }Tl“-‘thOdS four function evaluations per iteration, is proposed by using two weight functions. The
Methods with memory improvement of the convergence rate of this basic family, even up to 50%, is obtained with-

Acceleration of convergence
Order of convergence
Computational efficiency

out any additional function evaluation using a self-accelerating parameter. This varying
parameter is calculated in each iterative step employing only information from the current
and the previous iteration, defining in this way a family with memory. The self-accelerating
parameter is calculated applying Newton’s interpolating polynomials of degree scaling
from 1 to 4. The corresponding R-orders of convergence are increased from 8 to 10, 11,
6 +4v2 ~ 11.66 and 12, providing very high computational efficiency of the proposed
methods with memory. Another convenient fact is that these methods do not use deriva-
tives. Numerical examples and comparison with the existing three-point methods are
included to confirm theoretical results.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The most efficient existing root-solvers are based on multipoint iterations. This class of methods overcomes theoretical
limits of one-point methods related to the convergence order and computational efficiency. With these important advanta-
ges multipoint methods have attracted considerable attention at the beginning of the 21st century. The development of sym-
bolic computation and multi-precision arithmetics have additionally contributed to the rapid development of multipoint
methods.

Derivative free n-point methods with optimal order 2", where n + 1 is a fixed number of function evaluations per itera-
tions, are of special interest since they provide the construction of accelerated multipoint methods with memory of great
computational efficiency. This kind of methods, called optimal multipoint methods, is the subject of this paper. First, we de-
rive a family of three-point methods without memory with order eight (Section 2) and give some special cases used in
numerical tests in Section 5. Bearing in mind that higher-order multipoint methods without memory were already derived
in the literature, see, e.g., [1-19], the proposed family of three-point methods without memory is competitive with the exist-
ing three-point optimal methods. The convergence rate of this family is significantly increased in Section 3 using an old idea
by Traub [16], recently extended in [12]. The key idea that provides the order acceleration lies in a special form of the error
relation and a convenient choice of a free parameter. We define a self-accelerating parameter, which is calculated during the
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iterative process using Newton’s interpolating polynomial. Accelerating technique relies on information from the current
and the previous iterative step, defining in this way three-point methods with memory. The significant increase of conver-
gence speed is achieved without additional function evaluations, which is the main advantage of these methods compared to
the existing multi-point methods.

Section 4 is devoted to theoretical results connected to the R-order of the methods with memory. We show that, depend-
ing on the accelerating technique (the degree of the interpolating polynomial), the convergence rate can be improved up to
50%. Numerical results given in Section 5 confirm theoretical results and demonstrate very fast convergence and high com-
putational efficiency of the proposed methods.

2. Derivative free three-point methods

Let o be a simple real zero of a real function f : D ¢ R — R and let X, be an initial approximation to «. We take the tripled
Newton method as the base for constructing a new three-step scheme

_ Fx)
Yie =Xk = gy
Zk:yk_%a (])
f(zlz)

Xier1 = Zk T )’

where k = 0,1, ... is the iteration index. The order of convergence of scheme (1) is eight but its computational efficiency is
low. To improve this disadvantage, we substitute derivatives in all three steps by suitable approximations that use available
data. In the first step, we approximate

f'(x%) =~ flxx, wi], where wy =x+9f (%), 7 < R/{0}

and f[x,y] = % denotes a divided difference. Similarly, the other two derivatives can be approximated by secants with
additional adjustments carried out by weight functions with one and two variables. We introduce approximations

7 ~ D} 7Wk} _f(y)
fye) = ﬁ7 lk _f(XZ) )
! Nf[zkvwk] _f(zk)
f (Zk) ~ G(tk,Sk) ) sk _f(yk)7

used in the second and the third step of (1), where G and H are weight functions. The following iterative family of three-point
methods is obtained:

Y = Xk —f[{(ff{jv)k] 5 Wi = Xk + f (i),
A=Y~ o, =i, @)
X1 = Zx — A G(ty, S¢), S = Had

k+1 k= Flzewi ky>ok)y k= Fw -

The weight functions H and G should be chosen so that the family (2) is optimal, that is, its order should be at least eight.
For simplicity we drop the subscript on approximations. The new approximation to the sought root will be denoted with the
symbol ~ . To determine conditions under which the iterative scheme (2) is optimal, we will use Taylor’s representation of
functions appearing in (2) when x is in the neighborhood of «. When x — o, than y — « obviously, and we wish z, X — o even
faster.

Introduce the abbreviations

E=X—0, &=Y—0, &=Z—0, & =W-—0a,

fOw) . 6)

Ci =3 =2,3,...), Hj=HY(0),
i U3 B0

[ 8i+f
Gij= |=— G(t,s)] (i,j=0,1,2,...).

9'td's (£5)-(00)

Thus,
1,5, 1. 4

H(t) = Ho + Hit + 5 Hapt* + ZHst? + .., ®)

2 6

1 1
G(t73) = Go_’o + G]V()f + G()‘]S + i (Gz,otz + ZGL] ts + Go‘zsz) + 6 (G3'0t3 + 3G2‘1 tZS + 3G1'2t52 + (;0'353) +... (4)
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To deal with rather cumbersome expressions that appear in a standard convergence analysis of iterative methods, we will
employ symbolic computation in the computational software package Mathematica. The results of the convergence analysis
will be explained later by the comments C1-C7. The following abbreviations were used:

e=¢&=X—0, ew=28&,=Ww—0o==¢+)f(x),
ey=¢&=y-0, ez=¢&=2z—0, el=&E=X—20,
cj=¢, Hj=H; Gij=Gy g=7,

tx—f(X), Ty —f0). fz—f@), fia=f(2), fxw—"

Program written in Mathematica

fx=fla*(e+c2xe2+c3*e3+caxet+chreP+cB*xeb+c7xe +c8xe®) ;
fx-fw
,{e,0,8}|//Simplify;
e-ew )
ey=Series[e-fx/fxw,{e,0,8}]; fy=flax(ey+c2key’+c3*ey’+caxey?);

fy-£f
fyw=Series[ Y w,{e,O,S}]//Simplify; t=Series[fy/fx,{e,0,8}];
ey-ew

ew=e+gxfx; fw=fx/.e—ew; fxw=Series

H=HO+H1*t+1/2+H2%t2+1/6*H3*t3+1/24*Ha*t?;
ez=Series[ey-H*fy/fyw,{e,0,8}1;
b2=Coefficient[ez,e,2]//FullSimplify

C1: | Out [b2]—-c2x(1+grf1a)+(HO-1) |
HO=1;b3=Coefficient[ez,e,3]//FullSimplify

Cz:‘ Uut[b3]=—c22*(1+g*f1a)2*(H1—1)‘
H1=1;b4=Coefficient[ez,e,4]//FullSimplify

‘ Out [b4]=-*c2% (1+gxfia)®x(2%c3+c22* (H2-6+g*flax (H2-2)))

fz-fw
,1€,0,85];
ez-ew {e }

fz=flak(ez+c2*ez?); s=Series[fz/fy,{e,0,8}1; fzw=Series[

G=GOO+GLO*¥t+GO1*s+1* (G20¥t2+2%G11xt*s+G02%s?)

+3% (G30%t3+3%G21 4t 4 5+3%G12+ L ¥s2+G03*s?)

+o% (G40t +44G31 ¥t 34 s+64G22xt 2+ 2 +4%G13 ¥t *sP+G04*s)
el=Series[ez-Gxfz/fzw,{e,0,8}];
a4=Coefficient[el,e,4]//FullSimplify

C3:‘ Out [ad4] =J*c2% (1+g*£1a) % ( GOO-1 ) * (2*c3+c2%+ (g*flax (H2-2) +H2-6))

GOO=1; ab=Coefficient([el,e,5]//FullSimplify

C4: ‘ Out [a5]=2*c22* (1+g*£1a) 3% ( G10-1 )*(2*c3+c22*(g*fla*(H2—2)+H2—6))‘
G10=1; a6=Coefficient[el,e,6]//FullSimplify

Out [a6]=-1*c2* (1+g*f1a)®* (2%c3+c2%+ (g*flax (H2-2) +H2-6) ) (2+c3
*(GO1-1 ) +c22x (gxfla* ( GOL* (H2-2)-G20+2 )
Cs: + GO1% (H2-6)-G20+6 ) )

GO1=1; G20=H2; a7=Coefficient[el,e,7]//FullSimplify

Out [a7]=-15*c2%* (1+g*f1a) 1% (2xc3+c2%+ (g*f lax (H2-2) +H2-6) ) *(6%c3
*((G11-2 ) +c22x (gxfla* ( 3%G11* (H2-2) -3*H2+H3-G30+6 )
Cé: +3%G11% (H2-6) -3+H2+H3-G30+24 ) )

6
G11=2; G30=3*H2+H3-————-6;
1+gxfxw

a8=Coefficient[el,e,8]//FullSimplify

Out [a8] =fc*c2% (1+g*f1a) Tk (2xc3+c2%+ (g*f lax (H2-2) +H2-6) )
*(—24*c2*c4+12*c32*(G02—2)+12*c22*c3*(22—G21+G02*(H2-6)
-H2-g#f lax (-6+G21-GO2* (H2-2)+H2))
+c21% (-312+G40-6%G21* (H2-6) +3%G02+ (H2-6) >+60+H2-4*H3
+(g*f1a) 2 (-24+G40-6+G21* (H2-2) +3*G02% (H2-2) *+24*H2-4+H3
-H4) +2xgxfla* (-84+G40-6+G21* (H2-4) +3*G02* (H2-6) * (H2-2)
CT: +42*H2—4*H3—H4)—H4)>
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Comments C1 and C2: Since one of our goals is to provide ¢, = O(¢*), meaning that the first two steps of the scheme (2)
represent an optimal family of two-step methods (&, = o(¢y) is necessary for s — 0 when oo — 0), than the coefficients (b2 and
b3) with the terms &2 and & in ¢, representation have to be annulated. We obtain this by annulation of the expressions in
shadowed boxes, which leads to the choice Ho=HO=1and H; =H1=1.

Comment C3: In the same manner, to provide & = O(?), the representation of € must not have terms in ¢ of less degree
than eight. Thus, the coefficient a4 vanishes if the shaded expression is 0. Then the choice Ggo = GOO = 1 comes as obvious.

We use the same deduction in C4-C6 to determine G;o = 1, Go; = 1, G, = H, requiring that the coefficients a4, a5, a6
with &%, & and &° are 0.

Comment C7: After determining a7, the coefficient with &7, the first obvious choice is to eliminate 6xc3%(G11 — 2). Itis
easily done by setting G11 = 2. The reminding part of the coefficient a7 that we wish to annulate is than

3xH2 4+ H3—12 - 0330+ g=* flax*(3*xH2 +H3 — 6 — G30)

which leads to the choice G30 = 3 «x H2 + H3 — 6 — ﬁ However, the value f1a = f’(2) is not available, therefore we use

an available value fxw = f[x, w] to approximate f’(«), and come to the necessary conditions for the weight functions H and G
I‘I():‘l7 I‘I]:l7 |I'12|7 |I'I3|<OO7

Goo=1, Go=1, Goi=1, Gp=Hy, Gi;1=2, (5)
6

G;o=3H,+H; ——+——6

3,0 2+ M3 T+ W]

Therefore, functions H and G should have Taylor’s representation in the neighborhood of 0 (for H) and (0,0) (for G) of the form

7 1, 1,3
H(t)_l+t+§at +€bt +-e

G(ts)fl+t+s+1at2+2ts+1cs2+ 1a+1b—;—1 £+ ©
=)= 2 2 206 1+ yfxw]

Summarizing the above results, we can state the convergence theorem for the family (2).
Theorem 1. If an initial approximation xg is sufficiently close to a simple zero o of f and the weight functions H and G satisfy the

conditions (5), then the convergence order of the family of three-point methods (2) is equal to eight.
The following error relations, obtained with the help of the given program are very important in later discussions

Eew = Wi — o = (143 ())& + O(&f), 7)
ey =Y — 00 = C2(1 +9f ()&t + O(&}), (8)
ez =2 — o = Qa(1+9f ()¢ + O(e}), (9)
Eret = Xie1 — 00 = Qg (1 + 9f () &5 + O(&p), (10)

where a;4 and q, g are determined for the specific choice of the weight functions H and G.
We will consider now some particular methods following from the family (2). We give examples for the weight functions
H and G of simple form that satisfy the conditions (5).

Example 1.
From Taylor’s expansion (6), we conclude that the choice a = ¢ = 2 gives a sub-family of (2)
y:x_f{,g‘};),y W:X‘I"yf(x),

_y_ W _ )
X=z-f2K®w), v=t++,

~ few

where functions H and K satisfy the conditions
H(O0)=1, H(0)=1, H"(0)=2, H"(0)< oo,
K0)=1, K'(0)=1, K'(0)=2,

K”(0) = 3H"(0) + H"(0) — % -6

Particular methods arising from this sub-family are included in examples below.

Example 2. Choosing H;(t) = 1 + t allows the following choices for G

1

Gi(t,s) =1+t AAs— (1+ 083, I1=—
1(L,8) +t+s+2ts—(1+ )7, T’

14 at?

S =T i a1 )E
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Example 3. Another particular choice can be H(t) = -1 with G given by

N 2 2
@m9:1+“+9+ﬂu+?7 Ga(t,s) = 1+t N
1+ (A—1)(t+5) 1—(t+s)+ait

2
Example 4. Functions Hs(t) = 1+t +t?, and H; = (”fjﬂ/jﬁ) can be both combined with

1At +8) — (t+s)
1—(t+5)+At+s)?’

Gs(t,s) Go(t,s) =1+ (t+5)+ (t+5)* — At +5).

Example 5. Another choice Hy(t) = 1+t 4 t* can be combined with

1—s4+t+it
Gi(t,s)=———— 5
S = e
42
Gg(t,s): 1+'))f[x,W](1 t) 5
A +yflx,wh(1—t—s)+¢
Example 6. A square-root example Hs(t) = 345755”2 allows the choices
42
G9(t7$): 1+(1+A)t N2
1-t—s+(1+ M)t
1+ +2)({t+s)(1+t+s
Guo(t.s) — L1+ A +3) )

1+ At+59)

3. New families of three-point methods with memory

We observe from (10) that the order of convergence of the family (2) is eight when y # — 1/f'(«). With the choice
y = —1/f"(), it can be proved that the order of the family (2) can reach 12. Since the value f’(a) is unknown in practice, in-
stead of that, we could use an approximation f’(«) ~ f'(«), based on available information. Then, setting y = —1/f(«) in (2),
we can achieve that the order of convergence of the modified methods exceeds eight without the use of any new function
evaluations.

In this paper we consider Newton’s interpolation as the method for approximating f’(«) in the following four cases:

(I) f'(«) = N, (%) (N1 approach), where N;(t) = N;(t; X, 2,_1) is Newton’s interpolating polynomial of first degree, set

through two best available approximations (nodes) x, and z_;.

(I1) f' (o) = Ny (x) (N2 approach), where N, (t) = Ny (t; Xk, Zk_1,Y,_1) is Newton’s interpolating polynomial of second degree,
set through three best available approximations (nodes) x, zx_; and y,_;.

(1) f'(ot) = N5(x) (N3 approach), where Ns(t) = N3 (t;Xx,2k_1,Y 1,Wk_1) is Newton’s interpolating polynomial of third
degree, set through four best available approximations (nodes) x;, zx_1, ¥;_; and wy_;.

(IV) f'(a) = Nj(x,) (N4 approach), where Ny(t) = Na(t; Xk, 2k 1,Y_1,Xk-1,Wi_1) iS Newton’s interpolating polynomial of
fourth degree, set through five best available approximations (nodes) xx, zx_1, ¥i_1, Xk—1 and wy_1.

The main idea in constructing methods with memory consists of the calculation of the parameter y = y, as the iteration
proceeds by the formula y, = —1/f"(a) for k = 1,2, ... It is assumed that the initial estimate 7, should be chosen before start-
ing the iterative process, for example, using one of the ways proposed in [16, p. 186]. Regarding the above methods (I)-(IV),
we present the following four formulae for the calculation of y,:

1 .
ke TN &) (=1,2,3,4), (11)
where,
d
N; (xi) = {ENI (f)} - = {a (f (xx) + f[xe, Zk 1] (E — k) - = flxk, z 1], (12)
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=Xk, Zk1) + f Xk, Zie1, Vi | (% — Zee1) = FlXis Ze1] 4+ X, Y1) — flze-1, Vi) (13)
Ny = | gealt)]|
= {%(f(xk)+f[xk,zk,1](tka)+f[xk,zk4,yk_ll(tka)(tfqu)+f[xk,zk4,yk_l,wkq](tfxw(tfqu)(tfyk_l)) )
=f %k, Zk-1] +F X Ze1, Vi 1] (X = Zk-1) +F X Ze1, Y1 Wieet ] (= Ze-1) (k= Vi 1),
(14)

= {E (f (%k) + flXk, Zk—1) (€ — X)) + f Xk, Zee1, Vi ) (6 — %) (8 = Zie1) + f Xk Zk1, Ve Xee1) (8 = Xi) (6 — Zieea) ) (E— Vi)

+ FlXes Zk-1, Yiers Xe-1, Wiee1] (8 = Xi) (8 = Ziee1) (8 = Yie) (8= Xeo1))] ey,
=[xk, Zk-1] + %> Zk-1, Vi) X — Zkee1) + X 21, Yie 1 X1 (X — Zee1) Xk — Yier)

+ X Zk 1, Vi1 X1, Wi 1] (X — Zk1) (R — Yieer) (X — Xi1). (15)
Divided differences of higher order are defined recursively. A divided difference of order m, denoted by f|to,t1,...,tn], is
defined as
flto.tr. . ] _fltr,- -t —f[to,th...,tm,l]’ 2

tm —to

Since 7y, is calculated as the iteration proceeds using (12)-(15) in (11), the family of three-point methods with memory
corresponding to the family (2) follows

Vi =X — i Wi = X+ f (%),

Ze=ye— g Ht), =1, (16)
Xio1 = 2k — L2 G(ty, S¢), S = L&)

k+1 k Flzewid] ksok)s k T

where H and G are one and two-valued weight functions that satisfy (6). We use the term method with memory following
Traub’s classification [16, p. 8] and the fact that the evaluation of the parameter ), depends on the data available from
the current and the previous iterative step.

4. Convergence theorem

To estimate the convergence rate of the family of three-point methods with memory (16), where v, is calculated using
one of the formulae given by (11) and NJ’- (x) by (12)—(15), we will use the concept of the R-order of convergence introduced
by Ortega and Rheinboldt [9]. Now we state the convergence theorem for the family (16) of three-point methods with
memory.

Theorem 2. Let the varying parameter 7y, in the iterative scheme (16) be calculated by (11)A{(12)-(15)}. If an initial
approximation X is sufficiently close to a simple zero o of f, then the R-order of convergence of the three-point methods (16)-(N1),
(16)-(N2), (16)—~(N3) and (16)-(N4) with memory is at least 10,11,6 + 4v/2 ~ 11.66 and 12, respectively.

Proof. We will use Herzberger's matrix method [6] to determine the R-order of convergence for each case (N1)-(N4).The
lower bound of order of a single step s-point method x, = G(xy_1,X_2,...,Xk_s) iS the spectral radius of a matrix
M® = (my), associated to this method, with elements

my; = amount of information required at point x,;, (j=1,2,...,s),
mi,iflzl (i:2737"'7s)7
m;; =0 otherwise.

The lower bound of order of an s-step method G = G; 0o G, o --- 0 Gy is the spectral radius of the product of matrices
M=M; M, M.
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We can express each approximation x;,q, zx, Y and wy as a function of available information f(z;), f(yy), f(wy), f(xx)
from the k-th iteration and f(z,_1), f(¥x_1), f(Wk_1), f(Xx_1) from the previous iteration, depending on the accelerating
technique. According to the relations (16) and (N1)-(N4) we form the respective matrices. More details and illustrations
about the construction of Herzberger’'s M-matrices can be found in [11].

Now we determine the R-order of convergence of the family (16) for all approaches (N1)-(N4) applied for the calculation
of ).

Method (N1), y,, is calculated using (12):

We use the following matrices to express informational dependence

M 1 1 1 07
1 00 00O
Xki1 = @1(Zk, Vi Wiy X 2k-1) =M= 10 1 0 0 0],
00100
10 0 01 0]
1 1 1 0 0]
1 00 00O
Zk = Oy (Vi Wi, Xk, 211, Y1) = M2= {0 1 0 0 0],
00100
|0 0 0 1 0]
11000
1 00 0O
Ve = O3(Wi, Xk, Zk-1, Yk 1, Whe1) =Mz = |0 1 0 0 O,
00100
00010
11000
1 00 00O
Wi = @s(Xk Zk1, Vi1, Wi-1,X1) = Ma= |0 1 0 0 0.
00100
00010
The matrix MM corresponding to the multi-point method (16)-(N1) is
8 4000
4 2 000
MM =MM,M3My= |2 1 0 0 0
11000
1 00 00O

and its eigenvalues are {10,0,0,0,0}. Since the spectral radius of the matrix M™ is r = 10, we conclude that the R-order of
the methods with memory (16)-(N1) is at least ten.

Method (N2), v, is calculated using (13):

Similarly, matrices M;, M, and M3 again express informational dependence for x;,, z; and y,, while for w;, we have

11100
1 00 0O
Msq=10 1 0 0 Of.
00100
0 00 1O
The matrix M™?) corresponding to the multi-point method (16)-(N2) is now
8 4 400
4 2 2 00
M™) = MiM,MsMs= |2 1 1 0 0],
1 1100
1 00 0O
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with the eigenvalues {11,0,0,0,0}. Thus, we conclude that the R-order of the methods with memory (16)-(N2) is at least
eleven.

Method (N3), v, is calculated using (14):

The matrices My, M, and M3 remain the same, and the last informational matrix is

11110
1 00 0O
My=|0 1 0 0 O
00100
00010
The matrix M™? corresponding to the multi-point method (16)-(N3) is

8 4 0

4 2 2 2 0

M™N) =M MoMsM, =12 1 1 1 0],

1 1110

1 00 0O

with the eigenvalues {6 + 4v/2,6 — 4v/2,0,0, 0}. Therefore, the R-order of the methods with memory (16)-(N3) is not less
than 6 + 4v2 ~ 11.66.

Method (N4), vy, is calculated using (15):

Again, only the last informational matrix has a different form

11111
1 00 0O
My=|0 1 0 0 O
00100
000T1PO0
The matrix M™ corresponding to the multi-point method (16)-(N4) is
8 4 4 4 4
4 2 2 2 2
MM =M MoMsM, =2 1 1 1 1],
11111
1 00 0O

with the eigenvalues {12,0,0,0,0}. Hence, the R-order of the methods with memory (16)-(N4) is at least twelve.
In this way we have completed the analysis of all accelerating methods (N1)-(N4) so that the proof of Theorem 2 is
finished. O

5. Numerical examples

We have tested the proposed families of three-point methods (2) and (16) using the programming package Mathematica
with multiple-precision arithmetic. Apart from these families, several three-point iterative methods (IM) of optimal order
eight, which also require four function evaluations, have been tested. For demonstration, we have selected five methods dis-
played below.

Three-point methods of Bi et al. [2]:

=i
Ze = yi — 8 F5, (17)
Fx)+Bf(z) fz)

Xt = 2k~ Flo)+ (520 (@0 Toend il e v
where B € R, uy = f(y,)/f(xx) and g(u) is a real-valued function satisfying
g0)=1, g(0)=2, g'0)=10, [g"(0)] < oc.
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Derivative free Kung-Traub’s family [7]:

VR (. S
Vi = Xk f(xk+”//’f(xl<))*f(xk) ’
T O )
2= Yie ~ frenfo) fooima ) ER (18)

Fif (e +2f (xk)) ()’k *xkﬁ%) )
Xt = 2k ~ oo TalF e o) T @) T Foead”

Kung-Traub’s family with first derivative [7]:

nonf
_ _ _fxfn) - f(xe)
2k =Yk ™ g fyor Tou)? (19)

FRF0F @) {f 0> HOF00-F @} fix)
F(x) ~F ) P F )~ @) P F i) —F(zi) T/

Sharma-Sharma’s method [14]:

X1 = Zk —

Yie=Xk — %’
_ _fo . f(xe)
2 =Y~ Flag Fw-—200) (20)
— > @)\ f@)f ey
X1 = 2k (] + (Xk)) Fxezelf ezl *

DZuni¢-Petkovic—Petkovic’s method [4]:

_ f(x)
yk_XIC_ma

Z :ykih(ukyyk)f[igcv)k]v uk :%7 yk:f(%,;))v (21)
o fz)
X1 = Zk Flzk Y+ 1z Yie X @e=Yi0) +F 2k Yie X Wi (2 =Yi) (2e—=%1)

The errors |x; — o] of approximations to the zeros, produced by (2), (17)-(21), are given in Tables 1 and 2, where A(—h)
denotes A x 107", These tables include the values of the computational order of convergence r. calculated by the formula [10]

_ log|f (xe) /f (Xk-1)
fe= log |f (Xk—1) /f (X—2)|” (22)

taking into consideration the last three approximations in the iterative process. We have chosen the following test functions:

f(x) = e ™o Tsinmx 4 xlog(xsinx+1), o =0, X, = 0.6,
fx) =log(x* —2x+2) + e *sin(x—1), a=1, xo=1.35.

From Tables 1 and 2 and many tested examples we can conclude that all implemented methods converge very fast and
generate results of approximately same accuracy. From the last column of Tables 1 and 2 we notice that the computational
order of convergence r, calculated by (22), matches very well the theoretical order.

Applying the family (16) to the same functions as above, we observe considerable increase of the accuracy of approxima-
tions produced by the methods with memory. The quality of the approaches in calculating y, by (12)-(15) can be noticed

Table 1

Three-point methods without memory f(x) = ¥’ *®s*-1 sin 1x + xlog(xsinx + 1), &= 0, X, = 0.6.
Methods |x1 — o] |xp — ot |x3 —of e (22)
(17) g(u) =1+ 4, 0.166(-2) 0.221(-21) 0.221(-172) 7.999
(18) y=10.01 0.126(-2) 0.370(-23) 0.198(-187) 8.000
(19) 0.114(-2) 0.152(-23) 0.154(—190) 8.000
(20) 0.136(-2) 0.279(-23) 0.876(—189) 7.999
1) h(u,v)=u+1/1-v), y=-0.1 0.645(—4) 0.127(-32) 0.284(—262) 8.000
(2)H1 -Gy, y=-1 0.212(-3) 0.953(-33) 0.161(—267) 8.000
(2)Hy -G 0.318(-3) 0.180(-31) 0.195(-257) 8.000
(2)Hy - Gs 0.271(-2) 0.804(-23) 0.438(—187) 8.001
(2)Hy - G4 0.257(-3) 0.875(—32) 0.160(—259) 8.000
(2)Hs; - G5 0.609(-3) 0.370(—28) 0.680(—230) 8.000
(2)Hs; - Gg 0.155(-2) 0.748(-25) 0.211(-203) 8.000
(2)Hs - Gy 0.636(—3) 0.177(-28) 0.654(—233) 8.000
(2)H4 - Gg 0.276(-3) 0.958(—32) 0.206(—259) 8.000
(2) Hs - Gy 0.313(-3) 0.288(-31) 0.151(—255) 8.000
(2) Hs - Gyo 0.186(-3) 0.200(—32) 0.366(—264) 8.000
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Table 2
Three-point methods without memory f(x) = log(x? — 2x + 2) + ¥ 5**4sin(x — 1), &« =1, xo = 1.35.
Methods [x1 —of |xp — o |x3 — o] re (22)
(17), g(u) =1+ 72 0.570(-4) 0.898(-31) 0.341(-245) 7.999
(18) y =0.01 0.877(-4) 0.218(-30) 0.314(-243) 7.999
(19) 0.845(—4) 0.169(—30) 0.426(—244) 7.999
(20) 0.782(-4) 0.832(-31) 0.136(—246) 7.999
21)h(u,v) =u+1/1-wv), y=-0.1 0.499(-5) 0.291(-39) 0.385(—313) 8.000
(2)H; -Gy, y=-12 0.960(—6) 0.768(—49) 0.128(-393) 8.000
(2)H, - G, 0.113(-5) 0.241(—48) 0.101(—389) 8.000
(2)Hy - G5 0.231(-5) 0.103(—45) 0.162(—368) 8.000
(2)Hy - Gy 0.138(-5) 0.109(-47) 0.163(—384) 8.000
(2)H3 - Gs 0.240(-5) 0.442(-46) 0.594(-372) 8.000
(2)H3 - Gg 0.282(-5) 0.385(—45) 0.461(—364) 8.000
(2)Hy - G7 0.132(-5) 0.915(-48) 0.488(—385) 8.000
(2) Hg - Gg 0.109(-5) 0.158(—48) 0.315(-391) 8.000
(2) Hs - Gy 0.144(-5) 0.181(-47) 0.114(-382) 8.000
(2) Hs - Gyo 0.511(-5) 0.187(-43) 0.618(-351) 8.000
Table 3
Families of three-point methods (16) with memory f(x) = e¥+*®s*-1 sin tx + xlog(xsinx + 1), « =0, X, = 0.6, y, = —1.
Methods [x1 — of [Xp — of |x3 — of e (22)
-Gy N, 0.212(-3) 0.399(-36) 0.251(-363) 10.000
N, 0.212(-3) 0.486(—40) 0.256(—443) 11.007
N3 0.212(-3) 0.125(-42) 0.182(—-499) 11.645
Ny 0.212(-3) 0.111(-41) 0.344(-501) 12.003
Hy - G, N, 0.318(-3) 0.545(-35) 0.110(-351) 9.970
N, 0.318(-3) 0.549(-39) 0.343(-431) 10.967
N3 0.318(-3) 0.432(-41) 0.672(-481) 11.615
Ny 0.318(-3) 0.846(-41) 0.464(—-490) 11.956
H; - G3 N, 0.271(-2) 0.210(-26) 0.123(-266) 9.963
N, 0.271(-2) 0.624(-29) 0.274(-322) 11.012
N3 0.271(-2) 0.422(-30) 0.249(—355) 11.695
N4 0.271(-2) 0.208(—29) 0.154(—354) 11.990
Hy - Gy N, 0.257(-3) 0.181(-35) 0.217(-356) 9.981
N, 0.257(-3) 0.246(-39) 0.509(-435) 10.985
N3 0.257(-3) 0.706(—42) 0.555(—490) 11.621
Ny 0.257(-3) 0.571(-41) 0.422(-492) 11.981
Hs - Gs N, 0.609(-3) 0.154(-31) 0.496(—-318) 10.018
N, 0.609(-3) 0.625(-35) 0.278(—-388) 11.046
N3 0.609(-3) 0.110(-38) 0.995(—-456) 11.668
Ny 0.609(-3) 0.629(—36) 0.888(—433) 12.031
H3 - Gg N, 0.155(-2) 0.265(—28) 0.118(—285) 9.987
N, 0.155(-2) 0.287(-31) 0.534(—348) 11.023
N3 0.155(-2) 0.357(-33) 0.317(-391) 11.686
Ny 0.155(-2) 0.588(-32) 0.388(—385) 12.004
Hy - G7 N, 0.636(-3) 0.347(-32) 0.436(—324) 9.975
N, 0.636(-3) 0.169(-36) 0.970(—405) 10.968
N3 0.636(-3) 0.208(-37) 0.259(-439) 11.654
Ny 0.636(-3) 0.293(-39) 0.141(-475) 12.008
Hy - Gg N, 0.276(-3) 0.144(-35) 0.205(—357) 9.970
N, 0.276(-3) 0.163(-39) 0.548(—437) 10.971
N3 0.276(-3) 0.925(—42) 0.109(—488) 11.616
Ny 0.276(-3) 0.286(—41) 0.105(—495) 11.964
Hs - Gg Ny 0.313(-3) 0.103(—34) 0.655(—349) 9.980
N, 0.313(-3) 0.121(-38) 0.211(—427) 10.978
N3 0.313(-3) 0.541(-41) 0.105(-479) 11.618
Ny 0.313(-3) 0.245(-40) 0.159(-484) 11.971
Hs - Gyo Ny 0.186(-3) 0.756(—36) 0.636(—361) 10.036
N, 0.186(-3) 0.183(-39) 0.886(—438) 11.063
N3 0.186(-3) 0.112(-45) 0.484(-537) 11.638
Ny 0.186(-3) 0.107(-40) 0.708(—490) 12.063
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Table 4
Families of three-point methods (16) with memory f(x) = log(x2 — 2x +2) + e sin(x — 1), x =1, Xp = 1.35, 7, = —1.2.
Methods [x1 — o |xp — o] |x3 — o] e (22)
Hy - G, N 0.960(—6) 0.143(-58) 0.573(—586) 9.983
N, 0.960(—6) 0.700(— 64) 0.313(-702) 10.980
N3 0.960(—6) 0.141(-67) 0.541(—788) 11.651
Ny 0.960(—6) 0.215(—68) 0.633(—820) 11.996
Hy - G, Ny 0.113(-5) 0.241(-58) 0.290(—581) 9.976
N, 0.113(-5) 0.210(—63) 0.955(—697) 10.970
Ns 0.113(=5) 0.567(—67) 0.114(-780) 11.643
N4 0.113(=5) 0.105(—67) 0.125(-811) 11.992
Hy - Gs N, 0.231(-5) 0.217(-55) 0.587(—554) 9.966
N, 0.231(-5) 0.134(— 60) 0.953(—666) 10.955
N 0.231(-5) 0.103(—63) 0.149(—742) 11.634
Ns 0.231(-5) 0.320(—64) 0.255(—773) 12.048
Hy - G4 Ny 0.138(-5) 0.436(—57) 0.514(-571) 9.979
N, 0.138(-5) 0.223(-62) 0.184(—685) 10.971
N3 0.138(-5) 0.612(—66) 0.129(—768) 11.643
Ny 0.138(-5) 0.114(—66) 0.354(—799) 11.992
H; - Gs Ny 0.240(-5) 0.307(-55) 0.185(-552) 9.966
N, 0.240(-5) 0.192(—60) 0.506(—664) 10.955
Ns 0.240(-5) 0.156(—63) 0.194(—740) 11.634
Na 0.240(-5) 0.498(—64) 0.510(~771) 12.048
Hs - Gg N 0.282(-5) 0.114(— 54) 0.949(—547) 9.963
N, 0.282(-5) 0.773(—60) 0.231(—657) 10.951
N5 0.282(-5) 0.907(—63) 0.146(—731) 11.633
Ny 0.282(-5) 0.331(-63) 0.381(-761) 12.048
Hi - G; Ny 0.132(-5) 0.211(~57) 0.230(—574) 9.981
N, 0.132(-5) 0.114(—62) 0.431(—689) 10.977
N5 0.132(-5) 0.422(—66) 0.429(—771) 11.654
Ns 0.132(-5) 0.933(—67) 0.267(—800) 11.996
Hy - Gs Ny 0.109(-5) 0.283(-58) 0.685(—583) 9.976
Ny 0.109(—5) 0.144(—63) 0.145(—698) 10.971
N3 0.109(—5) 0.371(-67) 0.810(—783) 11.643
Ny 0.109(-5) 0.666(—68) 0.549(-814) 11.992
Hs - Go Ny 0.144(-5) 0.625(-57) 0.190(—569) 9.979
N, 0.144(-5) 0.322(— 62) 0.106(—683) 10.971
Ns 0.144(-5) 0.931(-66) 0.169(—766) 11.642
Ny 0.144(-5) 0.179(—66) 0.786(—797) 11.992
Hs - Gyo Ny 0.511(-5) 0.857(—53) 0.827(—528) 9.943
N, 0.511(-5) 0.878(—58) 0.221(—634) 10.928
Ns 0.511(-5) 0.409(—60) 0.338(—700) 11.617
A 0.511(-5) 0.220(—60) 0.158(—723) 11.977

from Tables 3 and 4. The computational order of convergence, given in the last column of Tables 3 and 4, is not so close to the
theoretical value of order as in the case of methods without memory (see Tables 1 and 2), but it is still quite acceptable as a
measure of convergence speed having in mind that methods with memory have more complex structure and the varying
parameter, related to the methods without memory.

The R-order of convergence of the family (16) with memory is increased from 8 up to 12, in accordance with the quality of
the applied accelerating method given by (12)-(15). The increase of convergence order is attained without any additional
function evaluations, which points to a very high computational efficiency of the proposed methods with memory.

Our concluding remark is concerned with an important problem appearing in practical application of multipoint methods.
As emphasized in [10], a fast convergence, one of the advantages of multipoint methods, can be attained only if initial
approximations are sufficiently close to the sought roots; otherwise, it is not possible to realize the expected convergence
speed in practice. For this reason, applying multipoint root-finding methods, a special attention should be paid to finding
good initial approximations. We note that an efficient procedure for finding sufficiently good initial approximations was re-
cently proposed by Yun [20] and Yun and Petkovic [21].
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