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A FAMILY OF TWO-POINT METHODS WITH

MEMORY FOR SOLVING NONLINEAR EQUATIONS

Miodrag S. Petković, Jovana Džunić, Ljiljana D. Petković

An efficient family of two-point derivative free methods with memory for
solving nonlinear equations is presented. It is proved that the convergence
order of the proposed family is increased from 4 to at least 2 +

√
6 ≈ 4.45, 5,

1

2

(

5 +
√
33

)

≈ 5.37 and 6, depending on the accelerating technique. The in-

crease of convergence order is attained using a suitable accelerating technique
by varying a free parameter in each iteration. The improvement of conver-
gence rate is achieved without any additional function evaluations meaning
that the proposed methods with memory are very efficient. Moreover, the
presented methods are more efficient than all existing methods known in
literature in the class of two-point methods and three-point methods of op-
timal order eight. Numerical examples and the comparison with the existing
two-point methods are included to confirm theoretical results and high com-
putational efficiency.

1. INTRODUCTION

The main goal and motivation in constructing iterative methods for solv-
ing nonlinear equations is to attain as high as possible order of convergence with
minimal computational cost. The most efficient existing root-solvers are based on
multipoint iterations, first studied in Traub’s book [16] and some papers and
books published in the 1960s and 1970s (see, e.g., [2], [3], [4], [6], [8], [9], [11]).
Multipoint iterative methods have again became an interesting and challenging task
at present since they overcome theoretical limits of one-point methods concerning
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the convergence order and computational efficiency. The highest possible compu-
tational efficiency of these methods is closely connected to the hypothesis of Kung

and Traub [6] from 1974. They have conjectured that the order of convergence
of any multipoint method without memory, consuming n function evaluations per
iteration, cannot exceed the bound 2n−1 (called optimal order). Multipoint meth-
ods with this property are usually called optimal methods. An extensive (but not
exhausting) list of optimal methods may be found, for example, in [12] and [13].

Let α be a simple real zero of a real function f : D ⊂ R → R and let x0
be an initial approximation to α. In many practical situations it is preferable to
avoid calculations of derivatives of f. First multipoint derivative free methods were
developed by Kung and Traub in [6] in 1974 with arbitrary order 2n−1 (n ≥ 2)
requiring n + 1 function evaluations. For n = 2 one obtains the derivative free
method

(1) xk+1 = xk − γf(xk)
2

f(xk + γf(xk))− f(xk)
(k = 0, 1, . . .)

of Steffensen-type with quadratic convergence (see [16, p. 185]). Taking n = 3 in
the Kung-Traub family, the following derivative free two-point family of fourth
order methods

(2)























yk = xk − γf(xk)
2

f(xk + γf(xk))− f(xk)
,

xk+1 = yk −
f(yk)f(xk + γf(xk))

(

f(xk + γf(xk))− f(yk)
)

f [xk, yk]
,

(k = 0, 1, . . .),

is obtained, where f [x, y] =
[

f(x) − f(y)
]

/(x − y) is a divided difference and γ
is a nonzero constant. The family (2) requires three function evaluations and has
the fourth order of convergence, which means that it supports the Kung-Traub

conjecture. Its efficiency index is E(2) ≈ 1.587.

In this paper we follow a basic principle of numerical analysis that a genuine
ranking of numerical algorithms can be attained using computational efficiency
that is always directly proportional to the quality of an algorithm and inversely
proportional to its computational cost. In the case of root-finders, very fast con-
vergence or approximations of great accuracy are of irrelevant importance if their
computational cost is too high.

The aim of this paper is to state a two-point family with memory of very
high computational efficiency. We start from a family of two-point methods without
memory with order 4, derived in [14], and increase the convergence order to 2+

√
6 ≈

4.45, 5,
1

2

(

5+
√
33

)

≈ 5.37 and 6 (depending on the accelerating technique) without

additional calculations. In this manner we obtain new methods for finding simple
roots of nonlinear equations, whose computational efficiency is higher than the
efficiency of existing methods known in literature in the class of two-point methods
and even higher than the efficiency of optimal three-point methods of order eight.
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The main idea is based on the use of suitable two-valued functions and the variation
of a free parameter γ in each iterative step. This parameter is calculated using
information from the current and previous iteration so that the developed methods
may be regarded as methods with memory following Traub’s classification [16, p.
8].

An additional motivation for studying methods with memory arises from a
surprising fact that such classes of methods have been considered in literature very
seldom in spite of their high computational efficiency. We cite pioneering results
of Traub [16, pp. 185–187], the three-point method of Neta [9] and the recently
developed method with memory [14] with the order 2 +

√
5 ≈ 4.236.

The paper is organized as follows. In Section 2 we present a family of two-
point methods without memory, which is an extended version of the family de-
rived in [14]. None calculation of derivatives are requested. A modification of the
Kung-Traub method (2) appears as a special case of this family. Using a varying
parameter, which is recursively calculated in each iteration, we develop a family
of two-point methods with memory. In Section 3 we state convergence theorems
which show that the R-order of convergence of the proposed family with memory is
at least 2+

√
6 ≈ 4.45 if a standard secant approach is applied, at least five if a new

method called improved secant approach is employed and even
1

2

(

5+
√
33

)

≈ 5.372

and 6 using Newton’s interpolatory polynomials of the second and third degree, re-
spectively. We emphasize that the increase of the order of convergence is obtained
without any additional function evaluations, which points to very high compu-
tational efficiency. Indeed, the efficiency index 1.71 of the proposed fifth order
two-point methods with memory is higher than the efficiency index 1.68 of optimal
three-point methods of order eight, while the methods with Newton’s interpolation
(with the efficiency indices 1.75 and 1.817) are even more efficient. Numerical ex-
amples and the comparison with the existing optimal two-point methods are given
in Section 4.

2. FAMILY OF TWO-POINT METHODS WITH MEMORY

To construct a family of derivative-free two-point methods, let us start from
the doubled Newton method















yk = xk − f(xk)

f ′(xk)
,

xk+1 = yk −
f(yk)

f ′(yk)

(k = 0, 1, . . .)(3)

and substitute derivatives f ′(x) and f ′(y) by suitable approximations. This is often
used model in designing two-point methods. Let

ϕ(x) =
f(x+ γf(x))− f(x)

γf(x)
,



A family of two-point methods with memory for solving nonlinear equations 301

be a function that appears in the Steffensen-like method (1), where γ is an arbitrary
real constant. Obviously, ϕ(x) is an approximation to the first derivative f ′(x)
assuming that |f(x)| is small enough.

It is natural to approximate f ′(x) ≈ ϕ(x) in (3). The derivative f ′(y) in the
second step of (3) will be approximated by f ′(y) ≈ ϕ(x)/h(u, v), where h(u, v) is
at least two-times differentiable function that depends on two real variables

(4) u = u(x, y) =
f(y)

f(x)
, v = v(x, y) =

f(y)

f(x+ γf(x))
.

Now from the iterative scheme (3) we state the family of two-point iterative
methods

(5)















yk = xk − f(xk)

ϕ(xk)
,

xk+1 = yk − h(uk, vk)
f(yk)

ϕ(xk)
,

(k = 0, 1, . . .),

where

uk =
f(yk)

f(xk)
, vk =

f(yk)

f(xk + γf(xk))
.

The weight function h should be determined in such way that the order of conver-
gence of the two-point method (5) is as high as possible, which is the subject of the
following theorem.

Theorem 1. If an initial approximation x0 is sufficiently close to a zero α of f
and the weight function h appearing in (5) satisfies the conditions

h(0, 0) = hu(0, 0) = hv(0, 0) = 1, hvv(0, 0) = 2,(6)

|huu(0, 0)| <∞, |huv(0, 0)| <∞,

then the error relation related to the family of two-point methods (5) is given by

εk+1 = xk+1 − α(7)

= −a2(1 + γf ′(α))2
[

a3 + a22
(

−4 + huu(0, 0)/2 + huv(0, 0)

+ (huu(0, 0)/2− 1)γf ′(α)
)

]

ε4k +O(ε5k).

Proof. Introduce the abbreviations

εk = xk − α, εk,y = yk − α, q = γf ′(α), ak =
f (k)(α)

k!f ′(α)
(k = 2, 3, . . .).

In what follows we will derive the error relation (7) of the family of two-point
methods (5), which is essential to our study.

Using Taylor series about the root α, we obtain

(8) f(xk) = f ′(α)
(

εk + a2ε
2
k + a3ε

3
k + a4ε

4
k

)

+O(ε5k)
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and

f(xk + γf(xk)) = f ′(α)
(

(1 + q)εk + a2(1 + 3q + q2)ε2k(9)

+ (2a22q(1 + q) + a3(1 + 4q + 3q2 + q3))ε3k

+ (a4(1 + 5q + 6q2 + 4q3 + q4) + a32q
2

+ a2a3q(5 + 8q + 3q2))ε4k

)

+O(ε5k).

In view of (8) and (9) we find

εk,y = yk − α = εk −
γf(xk)

2

f(xk + γf(xk))− f(xk)
(10)

= a2(1 + q)ε2k + (−a22(2 + 2q + q2) + a3(2 + 3q + q2))ε3k

+ (a32(4 + 5q + 3q2 + q3) + a4(3 + 6q + 4q2 + q3)

− a2a3(7 + 10q + 7q2 + 2q3))ε4k +O(ε5k).

By (10) we get

f(yk) = f ′(α)
(

εk,y + a2ε
2
k,y + a3ε

3
k,y + a4ε

4
k,y

)

+O(ε5k,y)(11)

= f ′(α)
(

a2(1 + q)ε2k + (−a22(2 + 2q + q2) + a3(2 + 3q + q2))ε3k

+(a32(5 + 7q + 4q2 + q3) + a4(3 + 6q + 4q2 + q3)

− a3(7 + 10q + 7q2 + 2q3)))ε4k

)

+O(ε5k).

Using (8) and (9) we find ϕ(xk), and by (8), (9) and (11) we can express uk
and vk given by (4). Assume that xk is sufficiently close to the zero α, then uk and
vk are close to 0. Hence, we can represent a two-valued function h occurring in (5)
by Taylor’s series about (0, 0) in the form

h(u, v) = h(0, 0) + hu(0, 0)u+ hv(0, 0)v +
huu(0, 0)

2
u2(12)

+ huv(0, 0)uv +
hvv(0, 0)

2
v2 + · · · ,

where the subscript indices u and v indicate the appropriate partial derivatives.
The error relation of the two-step iterative scheme (5) is

(13) εk+1 = xk+1 − α = εk,y − h(uk, vk)
f(yk)

ϕ(xk)
.

Using the conditions (6) and the developments (8)–(12), with the help of
symbolic computation in the computer algebra system Mathematica we start from
(13) and obtain the error relation (7).
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Remark 1. It was proved in [14] that the fourth order of the method (5) can be attained
under the relaxed conditions

(14) h(0, 0) = hu(0, 0) = hv(0, 0) = 1.

The additional requirement hvv(0, 0) = 2 in Theorem 1 enables that the term 1 + γf ′(α)

in (5) is squared; this fact is of essential importance which will be shown later. Otherwise,

the relaxed conditions (14) (assuming hvv 6= 2) give only linear factor 1 + γf ′(α) and,

consequently, slower convergence, see [14].

We observe from (7) that the order of convergence of the family (5) is four
when γ 6= −1/f ′(α). If we could provide γ = −1/f ′(α), the order of the family
(5) would exceed four. However, the value f ′(α) is not available in practice and
such acceleration is not possible. Instead of that, we could use an approximation
f̄ ′(α) ≈ f ′(α), calculated by available information. Then, setting γ = −1/f̄ ′(α),
we can achieve that the order of convergence of the modified method exceeds 4
without using any new function evaluations. Moreover, we will show in Section 3
that a special approximation of γ can produce two-point methods with memory
which have the order six.

Henceforth, we will often write wk = xk + γkf(xk), for brevity. In this paper
we will consider four methods for approximating f ′(α):

(I) f̄ ′(α) =
f(xk)− f(xk−1)

xk − xk−1
(secant approach).

(II) f̄ ′(α) =
f(xk)− f(yk−1)

xk − yk−1
(improved secant approach).

(III) f̄ ′(α) = N ′

2(xk) (Newton’s interpolatory approach), where

N2(t) = N2(t;xk, yk−1, xk−1)

is Newton’s interpolatory polynomial of second degree, set through three best
available approximations (nodes) xk, yk−1 and xk−1.

(IV) f̄ ′(α) = N ′

3(xk) (improved Newton’s interpolatory approach), where

N3(t) = N3(t;xk, yk−1, xk−1, wk−1)

is Newton’s interpolatory polynomial of third degree, set through four best
available approximations (nodes) xk, yk−1, xk−1 and wk−1.

Then the parameter γ = γk can be calculated recursively as the iteration proceeds
as

γk = − 1

f̄ ′(α)
= − xk − xk−1

f(xk)− f(xk−1)
(method (I)),(15)

γk = − 1

f̄ ′(α)
= − xk − yk−1

f(xk)− f(yk−1)
(method (II)),(16)
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γk = − 1

f̄ ′(α)
= − 1

N ′

2(xk)
(method (III)),(17)

γk = − 1

f̄ ′(α)
= − 1

N ′

3(xk)
(method (IV)).(18)

To calculate γk by (17) and (18), we need the expressions of N ′

2 and N
′

3. Since

N2(t) = f(xk) + f [xk, yk−1](t− xk) + f [xk, yk−1, xk−1](t− xk)(t− yk−1)

and

N3(t) = f(xk) + f [xk, yk−1](t− xk) + f [xk, yk−1, xk−1](t− xk)(t− yk−1)

+ f [xk, yk−1, xk−1, wk−1](t− xk)(t− yk−1)(t− xk−1),

we find

(19) N ′

2(xk) =
[ d

dt
N2(t)

]

t=xk

= f [xk, yk−1] + f [xk, yk−1, xk−1](xk − yk−1)

and

N ′

3(xk) =
[ d

dt
N3(t)

]

t=xk

= f [xk, yk−1] + f [xk, yk−1, xk−1](xk − yk−1)(20)

+ f [xk, yk−1, xk−1, wk−1](xk − yk−1)(t− xk−1).

It is preferable to calculate divided differences of higher order by a recursive pro-
cedure using divided differences of lower order.

Remark 2. The secant methods (I) and (II) are, in fact, the derivatives N ′

1(xk) of
Newton’s interpolatory polynomials of first order at the nodes xk, xk−1 and xk, yk−1,
respectively.

Remark 3. The accelerating method (15), actually Traub’s method [16] from 1964, was

used in [14] to increase the order from 4 to 2 +
√
5 ≈ 4.236 under the conditions (14).

The accelerating methods (16), (17) and (18), together with the additional condition

hvv(0, 0) = 2, are new, simple and very useful, providing considerable improvement of

convergence rate without any additional function evaluations.

By defining γ recursively as the iteration proceeds using (15), (16), (17) or
(18), we obtain a new derivative free two-point method with memory corresponding
to (5),

(21)























yk = xk −
γkf(xk)

2

f(xk + γkf(xk))− f(xk)
,

xk+1 = yk − h(uk, vk)
γkf(xk)f(yk)

f(xk + γkf(xk))− f(xk)
,

(k = 0, 1, . . .).

We use the term method with memory following Traub’s classification [16, p.
8] and the fact that the evaluation of the parameter γk depends on data available

unimerplus4
Cross-Out

unimerplus4
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from the current and the previous iterative step. Accelerating methods obtained by
recursively calculated free parameter may also be called self-accelerating methods.
The initial value γ0 should be chosen before starting the iterative process, for
example, using one of ways proposed in [16, p. 186].

Note that the iterative scheme (21) defines a family of two-step methods. We
can apply different two-valued weight functions h that satisfy the conditions (6).
For convenience, recall the list of functions of simple form presented in [14]:

1) h(u, v) =
1 + u

1− v
;

2) h(u, v) =
1

(1− u)(1− v)
;

3) h(u, v) = 1 + u+ v + v2;

4) h(u, v) = 1 + u+ v + (u+ v)2;

5) h(u, v) = u+
1

1− v
.

Using simple rearrangement, it is easy to show that the choice h(u, v) =
1

(1− u)(1− v)
gives the Kung-Traub method (2) with memory as a special case,

(22)



















yk = xk − γkf(xk)
2

f(xk + γkf(xk)) − f(xk)
,

xk+1 = yk −
f(yk)f(xk + γkf(xk))

(

f(xk + γkf(xk))− f(yk)
)

f [xk, yk]
,

(k = 0, 1, . . .).

3. CONVERGENCE THEOREMS

To estimate the convergence rate of the family of two-point methods (21),
we will use the concept of the R-order of convergence introduced by Ortega and
Rheinboldt [10]. The R-order of convergence of an iterative method (IM) that
converges to the zero α, will be denoted with OR((IM), α).

To avoid higher order terms in some relations, which make only “parasite”
parts of Taylor’s expansions and do not influence the convergence order, we employ
the notation used in Traub’s book [16]: If {fk} and {gk} are null sequences and

fk
gk

→ C,

where C is a nonzero constant, we shall write fk = O(gk) or fk ∼ Cgk.

In our convergence analysis we will use the Bachman-Landau a little o-

notation : For the sequences {ϕk} and {ψk} which tend to 0 when k → ∞ we
write ϕk = o(ψk) if lim

k→∞

ϕk/ψk = 0; in other words, ϕ is dominated by ψ asymp-

totically. Some auxiliary estimations necessary in this analysis are given in the
following lemma.
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Lemma 1. Let Nm be the Newton interpolation polynomial of degree m that inter-

polates a function f at m+1 distinct interpolation nodes t0, t1, . . . , tm contained in

an interval I and the derivative f (m+1) is continuous in I. Assume that

1) all errors ej = tj −α are sufficiently small, that is, all nodes t0, t1, . . . , tm are

sufficiently close to the zero α;

2) the condition e0 = o
(

e1 · e2 · · · em
)

holds.

Then

(23) N ′

m(t0) ∼ f ′(α)

(

1 + (−1)m+1am+1

m
∏

j=1

ej

)

.

Proof. The error of the Newton interpolation is given by the well known formula

(24) f(t)−Nm(t) =
f (m+1)(d)

(m+ 1)!

m
∏

j=0

(t− tj), (d ∈ I).

Differentiating (24) yields at the point t = t0

(25) N ′

m(t0) = f ′(t0)−
f (m+1)(d)

(m+ 1)!

m
∏

j=1

(t0 − tj).

In the neighborhood of the zero α, the function f and its derivatives may be
developed into Taylor series (for t = t0),

f(t0) = f ′(α)
(

e0 + a2e
2
0 + a3e

3
0 + . . .

)

,

f ′(t0) = f ′(α)
(

1 + 2a2e0 + 3a3e
2
0 + . . .

)

,(26)

f (m+1)(d) = f ′(α)
(

(m+ 1)!am+1 +
(m+ 2)!

1!
am+2ed + · · ·

)

,(27)

where ed = d−α. Substituting (26) and (27) into (25) and taking into account the
conditions of Lemma 1, after short arrangement we arrive at the relation (23).

Remark 4. The condition 2) of Lemma 1 is typical for multipoint methods with memory.

If {ek,j}j=0,1,...,m define iterative null sequences with orders r0, r1, . . . , rm, this condition

means that r0 > r1 + · · ·+ rm.

First we state the convergence theorem of the family of two-point methods
(21) with memory which uses the calculation of γk by (15).

Theorem 2. Let the varying parameter γk in (21) be recursively calculated by (15).
If an initial approximation x0 is sufficiently close to a zero α of f, then the R-order
of convergence of the two-point methods (21) is at least 2 +

√
6 ≈ 4.45.
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Proof. Let r be the R-order of the two-point methods (21) with memory, then we
may write

(28) εk+1 ∼ Dk,rε
r
k,

where Dk,r tends to the asymptotic error constant of (21) when k → ∞. From some
convenient applications, we rewrite the error relation (7) in the form

(29) εk+1 ∼ Ck(1 + γkf
′(α))2ε4k,

where

Ck = −a2
[

a3 + a22(−4 + huu(0, 0)/2 + huv(0, 0) + (huu(0, 0)/2− 1)γkf
′(α)

]

is now a varying quantity due to variable γk.

From Lemma 1 for m = 1 (see Remark 2) we have e0 = εk, e1 = εk−1 so that

N ′

1(xk) ∼ f ′(α)
(

1 + a2εk−1

)

.

Hence

γk = − xk − xk−1

f(xk)− f(xk−1)
= − 1

N ′

1(xk)
∼ 1− a2εk−1

f ′(α)

so that

(30) 1 + γkf
′(α) ∼ a2εk−1.

Substituting (30) in (29) yields εk+1 ∼ a22Ckε
4
kε

2
k−1. Since εk+1 ∼ Dk,rε

r
k ∼

Dk,rD
r
k−1,rε

r2

k−1 and ε4kε
2
k−1 ∼ D4

k−1,rε
4r
k−1ε

2
k−1, equating exponents of εk−1 in the

last two relations we obtain the quadratic equation r2 − 4r − 2 = 0. The positive
root r = 2 +

√
6 of this equation determines the lower bound of the R-order of

convergence of the method (21)–(15). �

To attain faster convergence, we now apply the improved secant approach
(16) where a better approximation yk−1 is used instead of xk−1. The R-order of
the corresponding two-point family with memory in this case is the subject of the
following theorem.

Theorem 3. Let the varying parameter γk in (21) be recursively calculated by (16).
If an initial approximation x0 is sufficiently close to a zero α of f, then the R-order
of convergence of the two-point methods (21) is at least five.

Proof. Calculating γk by (16) and using Lemma 1 for m = 2, e0 = εk, e1 = εk,y ,
we arrive at the following relation

(31) 1 + γkf
′(α) ∼ a2εk−1,y.

Assume that the R-order of convergence of the sequence of errors {εk,y} is p,
then we may write

(32) εk,y ∼ Dk,pε
p
k (2 ≤ p ≤ 3).
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Hence, by (28) and (32), we obtain

(33) εk,y ∼ Dk,p

(

Dk−1,rε
r
k−1

)p

= Dk,pD
p
k−1,rε

rp
k−1.

On the other hand, by combining (10), (28), (31) and (32) we find

εk,y ∼ a2(1 + γkf
′(α))ε2k ∼ a22εk−1,yε

2
k ∼ a22

(

Dk−1,pε
p
k−1

)(

Dk−1,rε
r
k−1

)2

,

whence

(34) εk,y ∼ a22Dk−1,pD
2
k−1,rε

2r+p
k−1 .

From (28)–(32) we obtain

εk+1 ∼ Ck

(

a2εk−1,y

)2
ε4k ∼ a22Ck

(

Dk−1,pε
p
k−1

)2(

Dk−1,rε
r
k−1

)4

(35)

= a22CkD
2
k−1,pD

4
k−1,rε

4r+2p
k−1 .

On the other hand, we obtain from (28)

(36) εk+1 ∼ Dk,r

(

Dk−1,rε
r
k−1

)r

= Dk,rD
r
k−1,rε

r2

k−1.

By comparing exponents of εk−1 on the right-hand side of (33) and (34),
and then on the right-hand side of (35) and (36), we form the following system of
equations

{

rp− 2r − p = 0,
r2 − 4r − 2p = 0,

with non-trivial solution p = 5/2 and r = 5. Therefore, the R-order of (21) is at
least five. �

Finally, we wish to show that the R-order of the family (21) is even greater
than 5 if the Newton interpolation polynomial of higher order is applied in the
calculation of γk by (17) and (18). It is assumed that only available information
are used.

Theorem 4. Let the varying parameter γk in the iterative scheme (21) be recur-

sively calculated by (17). If an initial approximation x0 is sufficiently close to a

zero α of f, then the R-order of convergence of the two-point methods (21)–(17)

with memory is at least
1

2

(

5 +
√
33

)

≈ 5.372.

Proof. In regard to Lemma 1, taking m = 2, e0 = εk, e1 = εk−1,y, e2 = εk−1 in
(23) we obtain

N ′

2(xk) ∼ f ′(α)
(

1− a3εk−1εk−1,y

)

.

From the last relation and (17) we find

(37) 1 + γkf
′(α) ∼ a3εk−1εk−1,y.
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Using (10), (28), (32) and (37), we obtain the following error relation

εk,y ∼ a2(1 + γkf
′(α))ε2k ∼ a2a3εk−1εk−1,yε

2
k(38)

∼ a2a3εk−1(Dk−1,pε
p
k−1)(Dk−1,rε

r
k−1)

2

= a2a3Dk−1,pD
2
k−1,rε

2r+p+1
k−1 .

In the similar manner, in regard to (28), (29), (32) and (37), we find

εk+1 ∼ Ck(1 + γkf
′(α))2ε4k ∼ Ck(a3εk−1εk−1,y)

2ε4k(39)

∼ Cka
2
3ε

2
k−1(Dk−1,pε

p
k−1)

2(Dk−1,rε
r
k−1)

4

= Cka
2
3D

2
k−1,pD

4
k−1,rε

4r+2p+2
k−1 .

Comparing the error exponents of εk−1 in pairs of relations (33),(38) and
(36),(39), we form the system of equations in p and r

{

rp− 2r − p− 1 = 0,
r2 − 4r − 2p− 2 = 0.

Positive solutions of this system are p =
1

4
(5 +

√
33 ) and r =

1

2
(5 +

√
33 ), and

we conclude that the lower bound of the R-order of the methods with memory

(21)–(17) is at least r =
1

2
(5 +

√
33 ) ≈ 5.372. �

Even faster convergence can be obtained if γk is calculated by (18), without
any additional computational cost, which is the subject of the following theorem.

Theorem 5. Let the varying parameter γk in the iterative scheme (21) be recur-

sively calculated by (18). If an initial approximation x0 is sufficiently close to a

zero α of f, then the R-order of convergence of the two-point methods (21)–(18)
with memory is at least six.

Proof. Let the errors appearing in the kth iteration be denoted with εk,y = yk−α,
εk,w = wk − α, εk = xk − α. Take e0 = εk, e1 = εk−1,y, e2 = εk−1, e3 = εk−1,w

in (23), according to Lemma 1 we have N ′

3(xk) ∼ f ′(α)
(

1 + a4εk−1εk−1,yεk−1,w

)

.
Hence

(40) 1 + γkf
′(α) ∼ a4εk−1εk−1,yεk−1,w.

As in the previous analysis, following (33) and (36) we may write

εk+1 ∼ Dk,rε
r
k ∼ Dk,rD

r
k−1,rε

r2

k−1,(41)

εk,y ∼ Dk,qε
q
k ∼ Dk,qD

r
k−1,rε

rq
k−1,(42)

εk,w ∼ Dk,pε
p
k ∼ Dk,pD

r
k−1,rε

rp
k−1.(43)

Furthermore, from (8), (10) and (29) we have

εk+1 ∼ Ck(1 + γkf
′(α))2ε4k,(44)
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εk,y ∼ a2(1 + γkf
′(α))ε2k,(45)

εk,w ∼ (1 + γkf
′(α))εk.(46)

By combining the above expressions (40)–(46) we derive the following error relations

εk+1 ∼ Ck(1 + γkf
′(α))2ε4k(47)

∼ Ck(a4εk−1εk−1,yεk−1,w)
2ε4k ∼ Cka

2
4D

4
k−1,rD

2
k−1,pD

2
k−1,qε

4r+2p+2q+2
k−1 ,

εk,y ∼ a2(1 + γkf
′(α))ε2k(48)

∼ a2(a4εk−1εk−1,yεk−1,w)ε
2
k ∼ a2a4D

2
k−1,rDk−1,pDk−1,qε

2r+p+q+1
k−1 ,

εk,w ∼ (1 + γkf
′(α))εk(49)

∼ (a4εk−1εk−1,yεk−1,w)εk ∼ a4Dk−1,rDk−1,pDk−1,qε
r+p+q+1
k−1 .

Equating appropriate exponents of εk−1 in pairs of relations (41),(47), then (42),(48)
and (43),(49), we arrive at the following system of equations in p, q and r,







r2 − 4r − 2p− 2q − 2 = 0,
rq − 2r − p− q − 1 = 0,
rp− r − p− q − 1 = 0,

with the positive solution p = 2, q = 3 and r = 6. Hence we conclude that the lower
bound of the R-order of the methods with memory (21)–(18) is at least six. �

Theorems 2, 3, 4 and 5 give the lower bound of the R-order of convergence
of the family (21) in the case of the accelerating approaches (I)–(IV). We observe
that the methods (21) with memory are considerably accelerated (even up to 50%)
related to the corresponding methods (5) without memory. The main advantage
of the presented methods with memory is their very high computational efficiency,
significantly higher than the efficiency of the existing two-point methods and even
higher than the efficiency of three-point methods of optimal order eight.

4. NUMERICAL EXAMPLES

We compared the family of two-point methods (21) with memory with sev-
eral optimal two-point iterative methods (IM) of the fourth order which also require
three function evaluations. First, we give a list of these methods, where the abbre-
viation ν(x) = f(x)/f ′(x) is used.

King’s family [4]:

xk+1 = Kf(β;xk) :(50)

= xk − ν(xk)−
f
(

xk − ν(xk)
)

f ′(xk)
· f(xk) + βf

(

xk − ν(xk)
)

f(xk) + (β − 2)f
(

xk − ν(xk)
) ,

where β is a parameter. Let us note that King’s family gives the following special
cases:
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Ostrowski’s method [11], β = 0:

K(0;xk) = xk − ν(xk)−
ν(xk)f(xk − ν(xk))

f(xk)− 2f(xk − ν(xk))
;

Kou-Li-Wang’s method [5], β = 1:

K(1;xk) = xk −
f(xk)

2 + [f(xk − ν(xk))]
2

f ′(xk)[f(xk)− f(xk − ν(xk))]
;

Chun’s method [1], β = 2:

K(2;xk) = xk − ν(xk)

{

1 +
f(xk − ν(xk))

f(xk)
+

2
[

f(xk − ν(xk))
]2

f(xk)2

}

.

Jarratt’s method [2]:

(51) xk+1 = xk − 1

2
ν(xk) +

f(xk)

f ′(xk)− 3f ′

(

xk − 2

3
ν(xk)

) .

Maheshwari’s method [7]:

(52) xk+1 = xk − ν(xk)

{

[

f
(

xk − ν(xk)
)]2

f(xk)2
− f(xk)

f
(

xk − ν(xk)
)

− f(xk)

}

.

Ren-Wu-Bi method [15]:

(53)















yk = xk − f(xk)

f [xk, zk]
, zk = xk + f(xk),

xk+1 = yk −
f(yk)

f [xk, yk] + f [yk, zk]− f [xk, zk] + a(yk − xk)(yk − zk)
.

Kung-Traub’s two-point method with derivative [6]:

(54)



















yk = xk − f(xk)

f ′(xk)
,

xk+1 = yk −
f(xk)

2f(yk)

f ′(xk)
(

f(yk)− f(xk)
)2 .

We applied the methods (21) and (50)–(54) to the following functions:

Example Function Root α
Initial
guess x0

1 e−x2+x+2 − cos(x+ 1) + x3 + 1 −1 −0.5
2 ex sin 5x− 2 1.3639731802 . . . 1.2
3 log(x2 + x+ 2)− x+ 1 4.1525907367 . . . 3.2
4 ex sinx+ log(x2 + 1) 0 0.3
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We employed the computer algebra system Mathematica with multiple-preci-
sion arithmetic. The errors |xk − α| for the first four iterations are given in Tables
1–4, where the denotation A(−h) means A× 10−h and K-T (·) is the abbreviation
for Kung-Traub’s methods (22) and (54).

It is evident that approximations to the roots given in Tables 1-4 possess
great accuracy. Results of the fourth iteration are given only for demonstration of
convergence speed of the tested methods and they are not required for practical
problems at present. Initial value γ0 = 0.01 was used.

Methods |x1 − α| |x2 − α| |x3 − α| |x4 − α|

King’s IM (50) β = 0 4.26(−4) 2.12(−15) 1.31(−60) 1.93(−241)

King’s IM (50) β = 1 2.57(−3) 2.44(−12) 1.99(−48) 8.80(−193)

King’s IM (50) β = 2 4.79(−3) 2.42(−11) 1.58(−44) 2.91(−177)

Jarratt’s IM (51) 2.27(−3) 2.04(−12) 1.34(−48) 2.50(−193)

Maheshwari’s IM (52) 3.68(−3) 9.35(−12) 3.90(−46) 1.18(−183)

Ren-Wu-Bi’s IM (53) 1.50(−3) 1.63(−11) 2.26(−43) 8.23(−171)

K-T (22), γk = 0.01 1.68(−3) 5.39(−13) 5.73(−51) 7.28(−203)

K-T (22), γk by (15) 1.68(−3) 9.36(−15) 3.70(−65) 2.76(−289)

K-T (22), γk by (16) 1.68(−3) 1.17(−16) 1.68(−83) 1.03(−417)

K-T (22), γk by (17) 1.68(−3) 6.27(−17) 1.33(−89) 7.75(−480)

K-T (22), γk by (18) 1.68(−3) 1.81(−17) 4.71(−103) 1.48(−616)

K-T (54) 1.30(−3) 1.73(−13) 5.37(−53) 5.02(−211)

(21)–(15) h = (1 + u)/(1 − v) 3.18(−3) 1.20(−13) 3.51(−60) 3.63(−267)

(21)–(16) h = (1 + u)/(1 − v) 3.18(−3) 1.51(−15) 6.05(−78) 6.26(−390)

(21)–(17) h = (1 + u)/(1 − v) 3.18(−3) 7.31(−16) 1.02(−83) 2.86(−448)

(21)–(18) h = (1 + u)/(1 − v) 3.18(−3) 2.02(−16) 9.31(−97) 8.80(−579)

(21)–(15) h = 1 + u+ v + v2 4.51(−3) 4.48(−13) 1.29(−57) 8.68(−256)

(21)–(16) h = 1 + u+ v + v2 4.51(−3) 5.64(−15) 4.52(−75) 1.46(−375)

(21)–(17) h = 1 + u+ v + v2 4.51(−3) 2.51(−15) 9.85(−81) 2.82(−432)

(21)–(18) h = 1 + u+ v + v2 4.51(−3) 6.71(−16) 1.23(−93) 4.93(−560)

(21)–(15) h = 1 + u+ v + (u+ v)2 1.31(−3) 3.72(−15) 5.90(−67) 3.01(−297)

(21)–(16) h = 1 + u+ v + (u+ v)2 1.31(−3) 4.61(−17) 1.61(−85) 8.39(−428)

(21)–(17) h = 1 + u+ v + (u+ v)2 1.31(−3) 2.54(−17) 8.83(−92) 1.68(−490)

(21)–(18) h = 1 + u+ v + (u+ v)2 1.31(−3) 7.40(−18) 2.12(−105) 1.23(−630)

(21)–(15) h = u+ 1/(1 − v) 4.37(−3) 3.95(−13) 7.30(−58) 6.83(−257)

(21)–(16) h = u+ 1/(1 − v) 4.37(−3) 4.99(−15) 2.43(−75) 6.48(−377)

(21)–(17) h = u+ 1/(1 − v) 4.37(−3) 2.22(−15) 5.02(−81) 7.54(−433)

(21)–(18) h = u+ 1/(1 − v) 5.92(−16) 6.09(−94) 7.11(−81) 7.54(−562)

Table 1. f1(x) = e−x2+x+2 − cos(x + 1) + x3 + 1, α = −1, x0 = −0.5

According to the results presented in Tables 1–4 and a number of numerical
examples, we can conclude that the convergence behavior of the two-point methods
(21) with memory (including the modified Kung-Traub method (22)), based on
the self-correcting parameter γk recursively calculated by (15)–(18), is considerably



A family of two-point methods with memory for solving nonlinear equations 313

Methods |x1 − α| |x2 − α| |x3 − α| |x4 − α|

King’s IM (50) β = 0 3.53(−3) 3.22(−10) 1.95(−38) 2.62(−151)

King’s IM (50) β = 1 5.34(−3) 1.82(−9) 2.10(−35) 3.74(−139)

King’s IM (50) β = 2 7.80(−3) 9.59(−9) 1.72(−32) 1.78(−127)

Jarratt’s IM (51) 3.25(−3) 2.37(−10) 6.24(−39) 2.98(−153)

Maheshwari’s IM (52) 6.57(−3) 4.48(−9) 7.98(−34) 8.04(−133)

Ren-Wu-Bi’s IM (53) diverges − − −
Ren-Wu-Bi’s IM (53) a) x0 = 1.4 1.85(−2) 3.31(−4) 9.35(−12) 5.42(−42)

K-T (22), γk = 0.01 7.28(−3) 9.15(−9) 1.85(−32) 3.08(−127)

K-T (22), γk by (15) 7.28(−3) 1.33(−11) 5.41(−49) 4.13(−216)

K-T (22), γk by (16) 7.28(−3) 4.17(−12) 2.89(−59) 4.29(−295)

K-T (22), γk by (17) 7.28(−3) 5.34(−12) 7.66(−61) 2.31(−323)

K-T (22), γk by (18) 7.28(−3) 2.62(−13) 2.75(−76) 3.74(−454)

K-T (54) 4.31(−3) 7.23(−10) 5.11(−37) 1.27(−145)

(21)–(15) h = (1 + u)/(1− v) 9.78(−3) 4.12(−11) 9.44(−47) 3.68(−206)

(21)–(16) h = (1 + u)/(1− v) 9.78(−3) 1.45(−11) 1.53(−56) 1.81(−281)

(21)–(17) h = (1 + u)/(1− v) 9.78(−3) 1.78(−11) 5.85(−58) 6.68(−308)

(21)–(18) h = (1 + u)/(1− v) 9.78(−3) 1.22(−12) 2.76(−72) 3.86(−430)

(21)–(15) h = 1 + u+ v + v2 1.20(−2) 9.26(−11) 3.91(−45) 5.65(−199)

(21)–(16) h = 1 + u+ v + v2 1.20(−2) 3.65(−11) 1.54(−54) 1.84(−271)

(21)–(17) h = 1 + u+ v + v2 1.20(−2) 4.31(−11) 7.34(−56) 1.22(−296)

(21)–(18) h = 1 + u+ v + v2 1.20(−2) 2.94(−12) 3.07(−69) 7.37(−412)

(21)–(15) h = 1 + u+ v + (u+ v)2 1.26(−3) 1.29(−14) 1.20(−62) 9.17(−277)

(21)–(16) h = 1 + u+ v + (u+ v)2 1.26(−3) 3.05(−15) 5.69(−75) 1.27(−373)

(21)–(17) h = 1 + u+ v + (u+ v)2 1.26(−3) 4.44(−15) 8.55(−78) 2.77(−414)

(21)–(18) h = 1 + u+ v + (u+ v)2 1.26(−3) 8.69(−17) 3.77(−97) 2.49(−579)

(21)–(15) h = u+ 1/(1− v) 1.25(−2) 1.10(−10) 8.52(−45) 1.78(−197)

(21)–(16) h = u+ 1/(1− v) 1.25(−2) 4.43(−11) 4.10(−54) 2.49(−269)

(21)–(17) h = u+ 1/(1− v) 1.25(−2) 5.19(−11) 2.06(−55) 3.07(−294)

(21)–(18) h = u+ 1/(1− v) 1.25(−2) 5.00(−12) 1.28 − 68) 3.77(−408)

Table 2. f2(x) = ex sin 5x− 2, α = 1.36397318026 . . . , x0 = 1.2

better than the existing methods (2) and (50)–(54) for most examples. It is obvious
from these tables that recursive calculation by the Newton interpolation (18) gives
the best results. Having in mind that all of the tested methods have the same
computational cost, we can conclude that the family of methods (21) with memory

a) The method (53) is divergent for x0 = 1.2, but it converges for the closer approximation
x0 = 1.4.
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Methods |x1 − α| |x2 − α| |x3 − α| |x4 − α|
King’s IM (50) β = 0 1.01(−3) 6.13(−16) 9.81(−65) 5.73(−260)

King’s IM (50) β = 1 2.12(−3) 2.14(−14) 2.25(−58) 2.69(−234)

King’s IM (50) β = 2 3.44(−3) 2.09(−13) 2.85(−54) 9.87(−218)

Jarratt’s IM (51) 1.08(−3) 9.57(−16) 5.82(−64) 7.94(−257)

Maheshwari’s IM (52) 2.78(−3) 7.62(−14) 4.32(−56) 4.46(−225)

Ren-Wu-Bi’s IM (53) 1.57(−4) 5.98(−20) 1.25(−81) 2.37(−328)

K-T (22), γk = 0.01 1.50(−3) 4.17(−15) 2.50(−61) 3.21(−246)

K-T (22), γk by (15) 1.50(−3) 1.98(−17) 1.05(−78) 1.44(−351)

K-T (22), γk by (16) 1.50(−3) 9.12(−20) 8.36(−101) 5.41(−506)

K-T (22), γk by (17) 1.50(−3) 8.05(−22) 1.20(−118) 2.60(−639)

K-T (22), γk by (18) 1.50(−3) 8.45(−23) 3.63(−138) 2.30(−830)

K-T (54) 1.52(−3) 4.46(−15) 3.30(−61) 9.95(−246)

(21)–(15) h = (1 + u)/(1− v) 2.09(−3) 7.36(−17) 3.91(−76) 3.86(−340)

(21)–(16) h = (1 + u)/(1− v) 2.09(−3) 3.46(−19) 6.56(−98) 1.61(−491)

(21)–(17) h = (1 + u)/(1− v) 2.09(−3) 2.52(−21) 7.08(−116) 1.80(−624)

(21)–(18) h = (1 + u)/(1− v) 2.09(−3) 5.00(−22) 1.56(−133) 1.47(−802)

(21)–(15) h = 1 + u+ v + v2 2.68(−3) 2.52(−16) 1.11(−73) 3.76(−328)

(21)–(16) h = 1 + u+ v + v2 2.68(−3) 1.19(−18) 3.11(−95) 3.89(−478)

(21)–(17) h = 1 + u+ v + v2 2.68(−3) 6.33(−21) 1.28(−113) 2.15(−612)

(21)–(18) h = 1 + u+ v + v2 2.68(−3) 2.84(−21) 5.57(−129) 3.20(−775)

(21)–(15) h = 1 + u+ v + (u+ v)2 5.69(−4) 3.04(−19) 6.26(−87) 6.18(−371)

(21)–(16) h = 1 + u+ v + (u+ v)2 5.69(−4) 1.41(−21) 7.29(−110) 2.73(−551)

(21)–(17) h = 1 + u+ v + (u+ v)2 5.69(−4) 1.58(−23) 5.13(−128) 1.39(−689)

(21)–(18) h = 1 + u+ v + (u+ v)2 5.69(−4) 5.49(−25) 2.78(−151) 4.59(−909)

(21)–(15) h = u+ 1/(1− v) 2.73(−3) 2.74(−16) 1.64(−73) 2.07(−328)

(21)–(16) h = u+ 1/(1− v) 2.73(−3) 1.28(−18) 4.63(−95) 2.82(−477)

(21)–(17) h = u+ 1/(1− v) 2.73(−3) 7.44(−21) 2.71(−113) 1.29(−610)

(21)–(18) h = u+ 1/(1− v) 2.73(−3) 2.76(−21) 4.58(−129) 9.58(−776)

Table 3. f3(x) = log(x2 + x+ 2)− x+ 1, α = 4.1525907367 . . . , x0 = 3.2

is the most efficient. More precisely, calculating the computational efficiency of
an iterative method (IM) of the order r, requiring θ function evaluations, by
Ostrowski-Traub’s formula E(IM) = r1/θ (see [11, p. 20], [16, Appendix C]),
we find

E(2) = E(50) = E(51) = E(52) = E(53) = E(54) = 41/3 ≈ 1.587
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Methods |x1 − α| |x2 − α| |x3 − α| |x4 − α|
King’s IM (50) β = 0 1.06(−2) 8.74(−8) 4.28(−28) 2.46(−109)

King’s IM (50) β = 1 1.80(−2) 2.00(−6) 3.78(−22) 4.78(−85)

King’s IM (50) β = 2 2.24(−2) 7.37(−6) 1.16(−19) 7.15(−75)

Jarratt’s IM (51) 1.05(−2) 8.32(−8) 3.49(−28) 1.08(−109)

Maheshwari’s IM (52) 2.02(−2) 4.06(−6) 8.52(−21) 1.65(−79)

Ren-Wu-Bi’s IM (53) 2.92(−2) 1.67(−5) 2.29(−18) 8.12(−70)

K-T (22), γk = 0.01 1.55(−2) 7.91(−7) 6.11(−24) 2.18(−92)

K-T (22), γk by (15) 1.55(−2) 1.14(−7) 2.32(−30) 2.33(−131)

K-T (22), γk by (16) 1.55(−2) 1.66(−8) 2.08(−38) 6.25(−188)

K-T (22), γk by (17) 1.55(−2) 6.04(−10) 8.01(−51) 5.33(−272)

K-T (22), γk by (18) 1.55(−2) 6.13(−10) 3.03(−54) 4.46(−320)

K-T (54) 1.52(−2) 7.20(−7) 4.12(−24) 4.43(−93)

(21)–(15) h = (1 + u)/(1− v) 1.84(−2) 2.57(−7) 8.49(−29) 2.09(−124)

(21)–(16) h = (1 + u)/(1− v) 1.84(−2) 3.41(−8) 6.99(−37) 2.68(−180)

(21)–(17) h = (1 + u)/(1− v) 1.84(−2) 1.69(−9) 1.87(−48) 2.89(−257)

(21)–(18) h = (1 + u)/(1− v) 1.84(−2) 1.71(−9) 1.43(−51) 4.97(−304)

(21)–(15) h = 1 + u+ v + v2 2.10(−2) 6.20(−7) 5.72(−27) 3.82(−116)

(21)–(16) h = 1 + u+ v + v2 2.10(−2) 9.06(−8) 8.97(−35) 9.28(−170)

(21)–(17) h = 1 + u+ v + v2 2.10(−2) 7.67(−9) 3.08(−45) 7.49(−240)

(21)–(18) h = 1 + u+ v + v2 2.10(−2) 7.72(−9) 2.58(−47) 3.57(−278)

(21)–(15) h = 1 + u+ v + (u+ v)2 1.57(−2) 6.92(−8) 1.56(−31) 8.34(−137)

(21)–(16) h = 1 + u+ v + (u+ v)2 1.57(−2) 1.11(−8) 2.03(−39) 5.57(−193)

(21)–(17) h = 1 + u+ v + (u+ v)2 1.57(−2) 7.01(−10) 7.22(−51) 4.40(−279)

(21)–(18) h = 1 + u+ v + (u+ v)2 1.57(−2) 7.09(−10) 7.43(−54) 9.83(−318)

(21)–(15) h = u+ 1/(1 − v) 2.06(−2) 5.56(−7) 3.55(−27) 4.56(−117)

(21)–(16) h = u+ 1/(1 − v) 2.06(−2) 7.67(−8) 4.25(−35) 2.21(−171)

(21)–(17) h = u+ 1/(1 − v) 2.06(−2) 4.96(−9) 4.91(−46) 3.13(−243)

(21)–(18) h = u+ 1/(1 − v) 2.06(−2) 5.00(−9) 1.39(−48) 6.37(−286)

Table 4. f4(x) = ex sinx+ log(x2 + 1), α = 0, x0 = 0.3

and

E((21)(15)) =
(

2 +
√
6
)1/3 ≈ 1.645, E((21)(16)) = 51/3 ≈ 1.71,

E((21)(17)) =
(

1

2

(

5 +
√
33

)

)1/3

≈ 1.75, E((21)(18)) = 61/3 ≈ 1.817.

Note that the last four entries do not refute the Kung-Traub conjecture because
they are related to the methods with memory, which are not the subject of the
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Kung-Traub conjecture. Also, note that the efficiency indices E((21)(16)) ≈ 1.71,
E((21)(17)) ≈ 1.75 and E((21)(18)) ≈ 1.817 are even higher than the efficiency index

(81/4 ≈ 1.68) of optimal three-point methods (without memory) of order eight.

We end this paper with the comment on the importance of the choice of initial
approximations. If they are chosen sufficiently close to the sought roots, then the
expected (theoretical) convergence speed will be reached in practice; otherwise,
all multipoint methods (and, in general, all iterative root-finding methods) show
slower convergence, especially at the beginning of the iterative process. For this
reason, a special attention should be paid to finding good initial approximations.
We note that an efficient method for the determination of initial approximations
of great accuracy was recently proposed in the excellent paper [17]. The well
known fact that the accuracy of obtained approximations strongly depends on initial
approximations and the structure and form of tested functions can be observed in
the case of f4(x) = ex sinx+log(x2 +1); all obtained approximations (Table 4) are
considerably worse compared to those produced in the remaining examples.
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