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ON AN EFFICIENT METHOD FOR THE

SIMULTANEOUS APPROXIMATION OF POLYNOMIAL

MULTIPLE ROOTS

Miodrag S. Petković, Ljiljana D. Petković, Jovana Džunić

An iterative method in parallel mode for the simultaneous determination
of multiple roots of algebraic polynomials is stated together with its single-
step variant. These methods are more efficient compared to all simultaneous
methods based on fixed point relations. To attain very high computational
efficiency, a suitable correction resulting from Li-Liao-Cheng’s two-point
fourth-order method of low computational complexity and Gauss-Seidel’s ap-
proach are applied. Considerable increase of the convergence rate is obtained
applying only ν additional polynomial evaluations per iteration, where ν is
the number of distinct roots. A special emphasis is given to the conver-
gence analysis and computational efficiency of the proposed methods. The
presented convergence analysis shows that the R-order of convergence of the
proposed single-step method is at least 2+ τν , where τν ∈ (4, 6) is the unique
positive root of the polynomial gν(τ ) = τν −4ν−1τ −22ν−1. The convergence
order of the corresponding total-step method is six. Computational aspects
and some numerical examples are given to demonstrate high computational
efficiency and very fast convergence of the proposed methods.

1. INTRODUCTION

The aim of this paper is to construct and study a new iterative method with
a very high computational efficiency for the simultaneous determination of all mul-
tiple roots of a polynomial. Actually, the proposed method is ranked as the most
efficient in the class of simultaneous methods for approximating polynomial multi-
ple roots based on fixed point relations. The presented iterative formula relies on
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the fixed point relation of Gargantini’s type [11]. A very high computational
efficiency is attained by employing suitable corrections which enable very fast con-
vergence (greater than six) with minimal additional computational cost. In fact,
these corrections arise from Li-Liao-Cheng’s two-point root-solver [19] with op-
timal order of convergence in the sense of the Kung-Traub conjecture [18]. More
details about multi-point methods may be found, e.g., in [32]–[37].

There is a vast literature on the methods for finding polynomial roots, see,
e.g., the books [16], [22], [23], [33], [40]. In this paper we concentrate on algorithms
for the determination of multiple roots. There are various approaches in construct-
ing these algorithms, which can be roughly divided into two classes: methods for
finding one root and methods for determination of all roots of a given polynomial
simultaneously. The first group includes, among others, quadratically convergent
Newton-like methods, methods of Graeffe’s type [20], [21], and one-point methods
of higher order such as Laguerre’s, Halley’s, Chebyshev’s, Ostrowski’s methods (see
[22]). These methods find one root at a time and they can be suitably modified to
preserve the convergence rate in the presence of multiplicity of roots.

Iterative methods that approximate all polynomial roots simultaneously make
the second group. The most frequently used procedures of this type are based on
root-relations (called, also, fixed point relations) [22], [33], [40], and (companion)
matrix iterations [16], [22, Ch. 6], [25], [45], [46], [47]. Note that the problem of
finding multiple roots is closely connected with the computation of cluster of roots,
see, e.g., [3], [15], [17], [26], [43], [47]. The computation of roots of polynomials
with inexact coefficients was considered in [5], [34], [44], [45], [47], etc.

In this paper we restrict our attention to a class of simultaneous methods
based on the root-relation (or the fixed point relation) of the form

ζi = Gi(z1, . . . , zν , ζ1, . . . , ζν) (i = 1, . . . , ν),

where ζ1, . . . , ζν are distinct (simple or multiple) roots of a given polynomial f(z)
and z1, . . . , zν are their approximations, respectively. Some of arguments of the
iteration functions Gi may appear once, several times or do not appear at all. Sub-
stituting the roots ζ1, . . . , ζν by new suitable approximations z∗

1
, . . . , z∗ν , permitting

the choice z∗j = zj, presumably improved approximations

(1) ẑi = Gi(z1, . . . , zν , z
∗
1 , . . . , z

∗
ν) (i = 1, . . . , ν)

are obtained. In this way, the iterative formula (1) defines a simultaneous method

generating k (mutually dependent) sequences {z
(k)

i }k=0,1,... (i = 1, . . . , ν).

The determination of all roots of a polynomial f(z), one-root-at-time-methods

can be performed in essentially two ways:

(i) Determine all ν roots starting from ν distinct initial approximations

z
(0)

1
, . . . , z

(0)

ν and generate k independent sequences {z
(k)

i }, where z
(k+1)

i = F (z
(k)

i ).

(ii) Determine the desired roots serially where, after finding a root ζi, the
corresponding linear factor z − ζi is removed from the polynomial and the process
is employed again to determine a root of the “deflated” polynomial whose degree
is now lowered (so-called method of successive deflation).
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According to the above short study, we can observe the following:

Approximations obtained by the simultaneous methods (1) are coupled so
that the improvement of any approximation improves the others. In this way the
accuracy of all approximations is almost the same. This is one of the most im-
portant advantages of simultaneous methods. It is obvious that this property does
not hold for one-root-at-time methods. Namely, since these methods are defined
by ν independent formulae of the form ẑi = F (zi) (see the point (i) above), it may
happen that some sequences, produced in this way, converge slowly, or even do not
converge at all. Also, the approach of successive deflation (the point (ii) above) can
cause that the polynomial obtained after divisions by insufficiently accurate linear
factors z − z(k) may be “falsified” to an extent which makes the remaining ap-
proximate roots meaningless. The presence of rounding errors further aggravates
this unpleasant situation. The mentioned advantages of simultaneous methods
make these methods, in general, much more robust than one-root-at-time methods,
which was extensively studied by Semerdziev [39]. Finally, comparing these two
classes of methods we also notice another advantage of simultaneous methods con-
sisting of their parallel implementation on parallel computers, which is not feasible
for one-root-at-time methods. For the displayed preferences, in what follows we
will not consider one-root-at-time methods. Nevertheless, for demonstration, we
give comparative results in Example 3 in Section 4.

The paper is organized as follows. In Section 2 we present a new iterative
method in parallel and serial fashion for the simultaneous determination of poly-
nomial multiple roots, starting from a suitable fixed-point relation and Li-Liao-
Cheng’s two-point method for multiple roots. The lower bound of the R-order of
convergence is determined in Section 3. Finally, Section 4 contains an analysis of
computational efficiency which shows that the proposed simultaneous method is
the most efficient among all methods based on fixed point relations. In addition,
three numerical examples are given to demonstrate exceptional convergence speed
of the proposed methods and to confirm the theoretical results.

2. MODIFIED GARGANTINI-LIKE METHOD

Let f(z) =
ν∏

j=1

(z − ζj)
μj be a monic polynomial of degree n with multiple

real or complex roots ζ1, . . . , ζν of respective multiplicities μ1, . . . , μν (ν ≤ n), and
let

(2) u(z) =
f(z)

f ′(z)
=

[
d

dz
log f(z)

]−1

=

( ν∑
j=1

μj

z − ζj

)−1

.

To construct an iterative method for the simultaneous determination of polynomial
multiple roots, we single out the term z− ζi from (2) and derive the following fixed
point relation
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(3) ζi = z −
μi

1

u(z)
−

∑

j∈�ν
j �=i

μj

z − ζj

(i ∈ Iν := {1, . . . , ν}).

Gargantini has used this relation in [11] for the construction of iterative methods
for the simultaneous inclusion of multiple roots of polynomials in complex circular
arithmetic.

Let z1, . . . , zν be distinct approximations to the roots ζ1, . . . , ζν . Setting z = zi
and substituting the roots ζj by some approximations z∗j in the right-hand side of
(3), one obtains the following iterative method

(4) ẑi = zi −
μi

1

u(zi)
−

∑

j∈�ν
j �=i

μj

zi − z∗j

(i ∈ Iν)

for the simultaneous determination of all multiple roots of the polynomial f. Here
ẑi denotes a new approximation to the root ζi.

The choice z∗j = zj in (4) gives the third-order method for finding multiple
roots

(5) ẑi = zi −
μi

1

u(zi)
−

∑

j∈�ν
j �=i

μj

zi − zj

(i ∈ Iν).

Note that if all roots are simple, then (5) reduces to the Ehrlich-Aberth method,
see [1], [7]. Furthermore, putting Schröder’s approximations z∗j = zj − μju(zj) in
(4), the following accelerated method of the fourth order is obtained (see [24]),

(6) ẑi = zi −
μi

1

u(zi)
−

∑

j∈�ν
j �=i

μj

zi − zj + μju(zj)

(i ∈ Iν).

Note that the iterative method (6) reduces to Nourein’s method [27] in the case
of simple roots.

In what follows we will write for simplicity∑
j<i

and
∑
j>i

instead of
∑
j∈�ν
j<i

and
∑
j∈�ν
j>i

.

The iterative methods (5) and (6) will be referred to as the total-step methods or
the methods in parallel mode. The convergence of this method can be accelerated
by calculating the new approximation ẑi serially using the already calculated ap-
proximations ẑ1, . . . , ẑi−1 as soon as they are available (the so-called Gauss-Seidel
approach). The single-step variants of the total-step methods (5) and (6) are given
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by

z
(k+1)

i = z
(k)

i −
μi

1

u(z
(k)

i )
−

∑

j<i

μj

z
(k)

i − z
(k+1)

j

−
∑

j>i

μj

z
(k)

i − z
(k)

j

(7)

(i ∈ Iν , k = 0, 1, . . .)

and

z
(k+1)

i = z
(k)

i −
μi

1

u(z
(k)

i )
−

∑

j<i

μj

z
(k)

i − z
(k+1)

j

−
∑

j>i

μj

z
(k)

i − z
(k)

j + u(z
(k)

j )

(8)

(i ∈ Iν , k = 0, 1, . . .).

According to the results for single-step methods for simple roots presented
in [2] and [24], the lower bounds of the R-order of convergence of the single-step
methods (7) and (8) can be derived:

(i) the R-order of convergence of the single-step method (7) is at least 2+ τν ,
where τν > 1 is the unique positive root of the polynomial G1,ν(τ) = τν − τ − 2;

(ii) the R-order of convergence of the single-step method (8) is at least 2+τν,
where τν > 2 is the unique positive root of the polynomialG2,ν(τ) = τν−2ν−1τ−2ν ;

Regarding (3)–(6), it is evident that the better approximations z∗j give the
more accurate approximations ẑi. Indeed, if z

∗
j → ζj then the right-hand side of (4)

tends to ζi. We apply this idea to construct a higher order method.

The iterative method (6) of the fourth order is obtained using Schröder’s
method z∗j = zj − μju(zj) of the second order. Further acceleration of the conver-
gence speed can be obtained by using methods of higher order for finding a single
multiple root. In this paper we use the following two-point method for solving
nonlinear equations proposed by Li, Liao and Cheng in [19]

(9) z∗ = L(z) := z − u(z) ·
β + γt(z)

1− δt(z)
, t(z) =

f ′(z − θu(z))

f ′(z)
,

where z∗ is a new approximation,

θ =
2m

m+ 2
, β = −

m2

2
, δ =

(
m+ 2

m

)m

, γ =
m(m− 2)

2
δ,

and m is the multiplicity of the wanted root ζ of a function f (not necessarily
algebraic polynomial in general).

In the sequel, we substitute z by the approximation zj of ζj and m by the
corresponding multiplicity μj of ζj . The approximation z∗j appearing in (4) is cal-
culated by (9), that is,

z∗j = L(zj) := zj − uj ·
βj + γjtj

1− δjtj
,
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where we put uj = u(zj), tj = f ′(zj − θjuj)/f ′(zj) and

θj =
2μj

μj + 2
, βj = −

μ2

j

2
, δj =

(
μj + 2

μj

)μj

, γj =
μj(μj − 2)

2
δj .

The order of convergence of the iterative method (9) is four, that is,

(10) z∗j − ζj = L(zj)− ζj = cj(zj − ζj)
4 +OM

(
(zj − ζj)

5
)
= OM

(
(zj − ζj)

4
)

holds (for the proof, see [19]). Here OM is a symbol which points to the fact that
two real or complex numbers w1 and w2 have modulii of the same order (that is,
|w1| = O(|w2|), O is the Landau symbol), written as w1 = OM (w2).

Remark 1. The quantity cj , appearing in (10), has been determined in [19] and reads

cj =
μ3
j + 2μ2

j + 2μj − 2

3μ4
j (μj + 1)3

Q
3
1,j − Q1,jQ2,j

μj(μj + 1)2(μj + 2)
+

μjQ3,j

(μj + 1)(μj + 3)(μj + 2)3
,

where Qλ,j = f (μj+λ)(ζj)/f
(μj )(ζj). Although the asymptotic error constant cj is given

by a complicated exression, it is bounded in magnitude and this fact is quite sufficient for

our purpose.

Now, using Li-Liao-Cheng’s approximations (9), we obtain from (4) a new
method for the simultaneous approximation of all simple or multiple roots of a
given polynomial,

(11) z
(k+1)

i = z
(k)

i −
μi

1

u(z
(k)

i )
−

∑

j∈�ν
j �=i

μj

z
(k)

i − L(z
(k)

j )

(i ∈ Iν , k = 0, 1, . . .)

starting from initial approximations z
(0)

1
, . . . , z

(0)

ν . The corresponding single-step

method or the method in serial mode is given by the iterative formula:

z
(k+1)

i = z
(k)

i −
μi

1

u(z
(k)

i )
−

∑

j<i

μj

z
(k)

i − z
(k+1)

j

−
∑

j>i

μj

z
(k)

i − L(z
(k)

j )

(12)

(i ∈ Iν , k = 0, 1, . . .).

3. CONVERGENCE ANALYSIS

In this section we determine the order of convergence of the total-step method
(11) and the single-step method (12) using the following definition of the order od
convergence introduced by Ortega and Rheinboldt [28]:

Let {z(k)} be any sequence with limit point ζ. Then the numbers

Rp{z
(k)} =

⎧⎪⎨⎪⎩
lim sup
k→+∞

|z(k) − ζ|1/k if p = 1,

lim sup
k→+∞

|z(k) − ζ|1/p
k

if p > 1,
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are R-factors of the sequence. If IP is an iterative process with limit point ζ, and
C(IP, ζ) is the set of all sequences generated by IP which converge to ζ, then

Rp(IP, ζ) = sup {Rp{z
(k)} | {z(k)} ∈ C(IP, ζ)} (1 ≤ p < +∞),

are called R-factors of IP at ζ. The quantity

OR(IP, ζ) =

{
∞, if Rp(IP, ζ) = 0 for all p ∈ [1,+∞),

inf {p ∈ [1,+∞) |Rp(IP, ζ) = 1}, otherwise

is called the R-order of IP at ζ.

Let an iterative process IP generate n sequences {z
(k)
1
}, . . . , {z

(k)
n } for the

approximations to the solutions ζ1, . . . , ζn. In order to estimate the order of con-
vergence of IP, one usually introduces the error-sequences

ε
(k)

i = ||z
(k)

i − ζi|| (i ∈ In).

The convergence analysis of the iterative methods with corrections (12) needs the
following assertion which is a special case of Theorem 3 given in [14]:

Theorem 1. Given the error-recursion

(13) ε
(k+1)

i ≤ αi

n∏
j=1

(
ε
(k)

j

)pij

, (i ∈ In, k ≥ 0),

where pij ≥ 0, αi > 0, 1 ≤ i, j ≤ n. Denote the matrix of exponents appearing in

(13) with Pn, that is, Pn = [pij ]n×n. If the non-negative matrix Pn has the spectral

radius ρ(Pn) > 1 and the corresponding eigenvector xρ > 0, then all sequences

{ε
(k)

i } (i ∈ In) have the R-order at least ρ(Pn).

We also need the following assertion.

Lemma 1. Let p, q ≥ 1 be positive integers and n ≥ 2. The sequence {xn} of the

positive roots of the equation

(14) xn − xqn−1 − pqn−1 = 0

is monotonically decreasing.

Proof. According to Descartes’ rule of sign, the equation (14) has the unique
positive root. Denote this root with xn and define the polynomial

φn(x) = xn − xqn−1 − pqn−1.

We have

φn(q) = −pq
n−1 < 0, φn(p+ q) = (p+ q)n − 2pqn−1 − qn > 0,
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which means that xn ∈ (q, p+ q). Since φn(xn) = 0, we have xnn = xnq
n−1 + pqn−1

so that

φn+1(xn) = xn+1

n − xnq
n − pqn = xn(xnq

n−1 + pqn−1)− xnq
n − pqn

= qn−1(x2n − (q − p)xn − pq) = qn−1(xn + p)(xn − q) > 0

since xn > q. Hence, and having in mind that the functions φj(x) are monotonically
increasing for x > q/n1/(n−1) , we have xn+1 < xn (see Figure 1). �

Now we can state the convergence theorem for the single-step method (12).

Figure 1. Geometry of polynomial roots

Theorem 2. If initial approximations z
(0)

1
, . . . , z

(0)

ν are sufficiently close to the

distinct roots ζ1, . . . , ζν of a given polynomial, then for the R-order of convergence

of the simultaneous method (12) we have

rν(12) := OR((12)) ≥ 2 + τν > 6,

where τν is the unique positive root of the polynomial gν(τ) = τν − 4ν−1τ − 22ν−1.

Furthermore, the sequence {rν(12)} is monotonically decreasing for ν ≥ 2, and
rν → 6 when ν → +∞.

Proof. Let

d(k) = min
i,j∈�ν
i�=j

{
|z

(k)

i − ζj |, |z
(k)

i − z
(k+1)

j |, |z
(k)

i − L(z
(k)

j )|
}
.

Under the conditions of Theorem 2 the inequality

(15) |ε(k)| = max
1≤i≤ν

|ε
(k)

i | <
d(k)
√
n− 1

holds for each k = 0, 1, . . . , since |ε(k)| is sufficiently small quantity which tends to
0, while d(k) tends to the constant non-zero value mini�=j |ζi − ζj |. The condition
(15) will be utilized later in the convergence analysis.
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For simplicity, we often omit the iteration index k in the iterative formulae
(11) and (12). Instead of L(zj) we often write z∗j . Let us introduce the errors of
approximations

εj = zj − ζj , ε̂j = ẑj − ζj , ε
∗
j = L(zj)− ζj = z∗j − ζj .

According to the conditions of Theorem 2, we can assume that εi = OM (εj) for
any pair i, j ∈ Iν . Let ε ∈ {ε1, . . . , εn} be the error of maximal modulus with
εj = OM (ε) (j ∈ Iν).

Introduce the abbreviations

Ŝi =
∑
j<i

μj ε̂j

(zi − ζj)(zi − ẑj)
, S∗i =

∑
j>i

μjε
∗
j

(zi − ζj)(zi − z∗j )
, (i ∈ Iν).

Starting from (12) and taking into account the identity (2), we find

ẑi = zi −
μi

μi

εi
+

(∑
j<i

μj

zi − ζj
−

∑

j<i

μj

zi − ẑj

)
+

(∑
j>i

μj

zi − ζj
−

∑

j>i

μj

zi − z∗j

)
= zi −

μi

μi

εi
− Ŝi − S∗i

.

According to the last relation we have

(16) ε̂i = ẑi − ζi = εi −
μiεi

μi − εiŜi − εiS∗i
= −

ε2i (Ŝi + S∗i )

μi − εiŜi − εiS∗i
, (i ∈ Iν).

Since ẑj and z∗j are more accurate approximations than zi, it is obvious |ε| ≥
|εi| > |ε∗i | > |ε̂i|. Assuming that the errors εi are sufficiently small in magnitude
(the assumption of Theorem 2) and having in mind the last ε-inequalities and the
definition of d, we obtain

|Ŝi| ≤
∑
j<i

μj |ε̂j|

|zi − ζj ||zi − ẑj|
≤

1

d2

∑
j<i

μj |ε̂j | ≤
|ε|

d2

∑
j<i

μj ,(17)

|S∗i | ≤
∑
j>i

μj |ε∗j |

|zi − ζj ||zi − z∗j |
≤

1

d2

∑
j>i

μj |ε
∗
j | ≤

|ε|

d2

∑
j>i

μj .(18)

Hence

1

|μi − εiŜi − εiS∗i |
≤

1

μi − |εiŜi| − |εiS∗i |
≤

1

μi −
|ε|2
d2

(n− μi)
(19)

≤
1

1−
|ε|2
d2

(n− 1)
=: q.
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Note that q > 0 due to (15).

Using (17), (18) and (19), we find from (16)

(20) |ε̂i| ≤ q|εi|
2

(∑
j<i

|Ŝi|+
∑
j>i

|S∗i |

)
, (i ∈ Iν).

Let μ = max
1≤i≤ν

μi and |ci| ≤ C for all i ∈ Iν (see Remark 1 and (10)). For two

complex quantities x and y such that x = OM (y) we will write x ∼ y, emphasizing
that x and y have magnitude of the same order. Then, neglecting higher-order
terms, we obtain from (20)

(21) |ε̂i| ∼
μq

d2
|εi|

2

(∑
j<i

|ε̂j |+ C
∑
j>i

|εj |
4

)
, (i ∈ Iν).

Replace

|εi| = C−1/3hi, |ε̂i| = C−1/3ĥi, |ε
∗
i | = C−1/3h∗i (i ∈ Iν)

into (21) and put h = max
1≤i≤ν

hi, h = O(hi). Note that positive entries hi, ĥi and

h∗i form null-sequences since initial approximations are assumed to be close enough
to the roots. Now (21) becomes

ĥi ∼
μqC−2/3

d2
h2i

(∑
j<i

ĥj +
∑
j>i

h 4

j

)
, (i ∈ Iν),

or in the form

(22) ĥi ∼ h2i

(∑
j<i

ĥj +
∑
j>i

h 4

j

)
, (i ∈ Iν)

since μqC−2/3/d2 is the bounded quantity.

Let us consider first the case ν = 2. From (22) we have

ĥ1 ∼ h 2

1 h
4

2 , ĥ2 ∼ h 2

1 h
6

2 .

Introducing the iteration index, these relations can be written in the form

h
(k+1)

1
∼

(
h
(k)
1

)2(
h
(k)
2

)4
, h

(k+1)

2
∼

(
h
(k)
1

)2(
h
(k)
2

)6
.

According to Theorem 1, for these relations we form the matrix of exponents

P2 =

[
2 4
2 6

]
with the spectral radius ρ(P2) = 4+2

√
3 ≈ 7.464 and the corresponding eigenvector

xρ = (
√
3− 1, 1) > 0. Hence, in regard to Theorem 1, we obtain

OR((12))ν=2 ≥ ρ (P2) = 4 + 2
√
3 ≈ 7.464.
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Adopting that h
(k)
1

= O(h
(k)
2

) = O(h
(k)
3

), in a similar way we can form the
following system for ν = 3.

h
(k+1)

1
∼

(
h
(k)
1

)2(
h
(k)
2

)4
, h

(k+1)

2
∼

(
h
(k)
2

)2(
h
(k)
3

)4
, h

(k+1)

3
∼

(
h
(k)
1

)2(
h
(k)
2

)4(
h
(k)
3

)2
.

According to Theorem 1 the associated matrix of exponents is

P3 =

⎡⎣ 2 4 0
0 2 4
2 4 2

⎤⎦
with the spectral radius

ρ(P3) =
2

3

[
3 +

(
54− 5

√
33

)1/3
+ 6

(
9 +

√
33

)1/3]
≈ 6.766

and the corresponding eigenvector xρ = (0.7044, 0.8392, 1), where the lines
indicate that the components of xρ are rounded numbers. Therefore,

OR((12))ν=3 ≥ ρ (P3) ≈ 6.766.

According to the presented two examples we can state a general procedure,
already considered by Alefeld and Herzberger [2]. Taking into account the
conditions of Theorem 2 we may assume that

h
(0)

i ≤ h < 1 (i = 1, . . . , ν).

We start from (22) and write

h
(k+1)

j ∼ hp
(k+1)

j (j ∈ Iν , k = 0, 1, 2, . . .).

The column vectors p(m) =
[
p
(m)

1
, . . . , p

(m)

n

]T
are computed by

(23) p(m+1) = Aνp
(m)

starting with p(0) = [1 · · · 1]T . The ν× ν matrix Aν in the recurrence relation (23)
is given by

Aν =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 4
2 4

2 4
. . .

2 4
2 4 0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The matrix Aν is nonnegative and its directed graph is strongly connected
([41]), that is, Aν is irreducible. By the Perron-Frobenius theorem (see [41]) it fol-
lows that Aν has a positive eigenvalue equal to its spectral radius ρ(Aν). Following
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the analysis given in [2] it can be shown that the lower bound of the R-order of
the single-step method (12), denoted by OR((12), ζ), for which the relations (22)
hold, is given by the spectral radius ρ(Aν). The spectral radius ρ(Aν) is the unique
positive root of the characteristic polynomial of the matrix Aν given by

φν(λ) = (λ − 2)ν − 4ν−1(λ− 2)− 22ν−1.

Substituting τ = λ− 2 we obtain the polynomial

(24) ψν(τ) = φν(τ + 2) = τν − 4ν−1τ − 22ν−1.

Observe that the equation (24) is a particular case of (14) for p = 2 and q = 4.
Therefore, the sequence {τν} of positive roots of (24) is monotonically decreasing
and τν > 4 in regard to Lemma 1. Since τ3 ≈ 4.766 < τ2 ≈ 5.464, it follows that
the sequence {τν} is monotonically decreasing for τν ≥ 2. Hence, OR((12)) > 6 and
the sequence of the lower bounds {OR((12))ν≥2} is monotonically decreasing with
ν ≥ 2.

Let rν be the R-order of convergence of a simultaneous method for multiple
roots for which the relations

hi ∼ h
p
i

(∑
j<i

ĥj +
∑
j>i

h
q
j

)
(p, q ≥ 1, i = 1, . . . , ν)

are valid. Using Deutsch’s result on the spectral radius of irreducible matrices
[6], it was proved in [30, p. 9] that

rν > p+ q +
pq

(ν − 1)(p+ q)
.

Hence r∞ = lim
ν→∞

rν = p+ q. In our specific case we have p = 2, q = 4 and so that

r∞ = 6. Therefore, OR((12)) ∈ (6, 8) for ν ≥ 2 and tends to 6 when ν →∞. �

The values of the lower bound of the R-order of the single-step method (12)
are given in Table 1 for several values of the number of distinct roots ν.

ν 2 3 4 5 6 7 10 15 20

R-order 7.464 6.766 6.520 6.393 6.316 6.265 6.178 6.115 6.085

Table 1. The lower bounds of R-order of convergence of the single-step method (12).

In the case of the total-step method (11), the first sum in (21) does not exist
so that we have (taking iteration index)

(25) ε
(k+1)

i = A
(k)

i

(
ε(k)

)6
+OM

((
ε(k)

)7)
,

where A
(m)

j 
= 0 is a constant of the bounded magnitude for all m ≥ 0. According
to the results given by Ortega and Rheinboldt in [28, pp. 297–298], it can be
proved that the R-order of the total-step method (11) is at least six. To be more
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precise regarding the convergence rate of the iterative method (11), we use Exercise
9.3-4 in [28, p. 298] given here in the form of

Proposition 1. Suppose that for the sequence {x(k)} ⊂ Rn with limit x∗ there is

some s ∈ [1,∞) such that the limit

Cs{x
(k)} = lim

k→+∞

‖x(k+1) − x∗‖

‖x(k) − x∗‖s

exists and 0 < Cs <∞. Then the R-order of {x(k)} is exactly s.

Now we can state the following assertion.

Theorem 3. The R-order of the total-step method (11) is exactly six.

Proof. We deal with ν (≤ n) distinct roots. For simplicity, we take the norm

‖z‖1 =
ν∑

j=1

|zj |, z = (z1, . . . , zν) and obtain by (25)

(26)
‖z(k+1) − ζ‖

‖z(k) − ζ‖6
=

ν∑

j=1

∣∣A(k)

j

(
ε(k)

)6
+OM

((
ε(k)

)7)∣∣
( ν∑

j=1

|ε
(k)

j |
)6

.

Let A(k) = min
1≤j≤ν

|A
(k)

j | with the limit lim
k→∞

A(k) = A, 0 < A < ∞. Then, after

dividing by |ε
(k)

1
|6, (26) becomes

(27)
‖z(k+1) − ζ‖

‖z(k) − ζ‖6
≥ A(k) ·

∣∣1 +OM

(
ε(k)

)∣∣(1 + (ν − 1)
∣∣∣ε(k)
ε
(k)

1

∣∣∣6)(
1 +

ν∑

j=2

∣∣∣ε(k)j

ε
(k)

1

∣∣∣)6
.

Assume that initial approximations z
(0)

1
, . . . , z

(k)
ν to the roots are chosen so

that the errors |z
(0)

j − ζj | are of approximately the same magnitude. Then all

quotients |ε(k)/ε
(k)
1
|, |ε

(k)

j /ε
(k)
1
| will be bounded at each iteration with limits, say,

+∞ > lim
k→∞

|ε(k)/ε
(k)

1
| = η1 > 0 and +∞ > lim

k→∞
|ε

(k)

j /ε
(k)

1
| = ηj1 > 0.

Note that η1 = max
1≤j≤ν

ηj1. Taking the limit in (27) we find

C3((11)) = lim
k→+∞

‖z(k+1) − ζ‖

‖z(k) − ζ‖6
≥ A ·

1 + (ν − 1)η6
1(

1 +
ν∑

j=2

ηj1

)6
> 0.

Therefore, the asymptotic error constant C3((11)) is strictly positive. Hence, ac-
cording to Proposition 1 it follows that the R-order of the iterative method (11) is
exactly six.
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4. COMPUTATIONAL ASPECTS

From a practical point of view, it is of great importance to estimate the
computational efficiency of any iterative root-finding method since it is closely con-
nected to the features such as the number of necessary numerical operations in
computing the roots with the required accuracy, the convergence speed, processor
time of a computer, etc. The knowledge of the computational efficiency is of par-
ticular interest in designing a package of root-solvers. More details about this topic
may be found in [30, Ch. 6].

In this section we compare the convergence behavior and computational effi-
ciency of the single-step methods (7), (8) and the new simultaneous method (12).
This comparison procedure is entirely justified since the analysis of efficiency given
in [30, Ch. 6] for several computing machines showed that the method (8) has
the highest computational efficiency in the class of simultaneous methods based on
fixed point relations. Note that we did not compare the new method (12) to other
sixth-order methods for the two reasons:

1) Very efficient methods of the form (4) do not exist (except the methods (11)
and (12)); in fact, Li-Liao-Cheng’s two-point method (9), used in the construction
of (11) and (12), was the first optimal two-point method for multiple roots, launched
in 2009. Although some generalized optimal two-point methods appeared later, Li-
Liao-Cheng’s method has the simplest form.

2) The existing sixth-order methods for multiple roots, such as Halley-like
methods [31], [42], are less efficient than the analyzed method (8), see [30, Ch. 6].

Comparing the iterative formulas (8) and (12) we observe that the new
formula (12) requires ν new polynomial evaluations per iterations in relation to
(8). Hence we conclude that the minimal computational efficiency of the iterative
method (12) appears when ν = n, that is, when all roots are simple. For this reason
we will consider this “worst case” in our computational analysis.

As presented in [22, Ch. 1] and [30, Ch. 6], the efficiency of an iterative
method (IM) can be successfully estimated using the efficiency index given by

(28) E(IM) =
log r

θ
,

where r is the R-order of convergence of the iterative method IM, and θ is its
computational cost. The rank list of methods obtained by this formula mainly
matches well with a real CPU (central processor unit) time.

In order to evaluate the computation cost θ it is preferable to use the num-
ber of arithmetic operations per iteration taken with certain weights depending on
the execution times of operations. Denote these weights with was, wm and wd for
addition/subtraction, multiplication, and division, respectively. Let AS(n), M(n)
and D(n) be the number of additions+subtractions, multiplications and divisions
per one iteration for all n roots of a given polynomial of degree n. Then the com-
putational cost θ can be (approximately) expressed as

(29) θ = θ(n) = wasAS(n) + wmM(n) + wdD(n)
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and from (28) and (29) we obtain

(30) E(IM, n) =
log r

wasAS(n) + wmM(n) + wdD(n)
.

For more details see [29].

We consider real polynomials with real roots for simplicity. The analysis for
complex polynomials is very similar although it is slightly tedious since either a
reduction to operations in real arithmetic is required, or the weights for complex
operations are necessary (using, for instance, recent results given in [4]). The
numbers of basic operations in real arithmetic are given in Table 2 as functions of
the polynomial degree n.

Methods AS(n) M(n) D(n)

Ehrlich-Aberth’s type method (7) 4n2 − 2n 2n2 n2 + n

Nourein’s type method (8) 4n2 − n 2n2 n2 + n

The new method (12) 5n2 + n 3n2 + 2n n2 + 2n

Table 2. The number of basic operations (real arithmetic operations)

To compare the simultaneous methods (7), (8) and (12), we used the weights
(appearing in (30)) determined according to the estimation of complexity of basic
operations in multi-precision arithmetic. Without loss of generality, we assume
that floating-point number representation is used, with a binary fraction of b bits.
In other words, we deal with “precision b” binary digits, giving results with a
relative error of approximately 2−b. Following results given in [4], the execution time
tb(A) and tb(S) of addition and subtraction is O(b). Using Schönhage-Strassen

multiplication (see [9], [38]), often implemented in multi-precision libraries (used,
for instance, in the computer algebra systems Mathematica, Maple, Magma), we
have tb(M) = O

(
b log b log log b

)
and tb(D) = 3.5tb(M). We chose the weights

was, wm and wd proportional to tb(A), tb(M) and tb(D), respectively, for a 128-bit
architecture (b = 128).

Applying (30) we calculated the percent ratios

ρ11,6(n) = (E((11), n)/E((6, n)− 1) · 100 (in %), (New/EA%)

ρ11,7(n) = (E((11), n)/E((7), n)− 1) · 100 (in %), (New/N%)

where EA, N and New stand for the method (7) of Ehrlich-Aberth’s type, the
method (8) of Nourein’s type and the new method (12) with Li-Liao-Cheng’s cor-
rections, respectively. These ratios are graphically displayed in Figure 2 as the
functions of the polynomial degree n and show the (percentage) improvement of
computational efficiency of the new method (12) in relation to the methods (7)
and (8). In Figure 2 ρ11,6(n) is drawn by dotted line and ρ11,7(n) by full line.
Note that very similar curves are obtained using the weights proportional to the
execution times of basic operations for octuple precision (machine epsilon ∼ 10−67)
for Pentium M 2.8 GHz running Fedora core 3 and Opteron 64-bit processor (data
taken from [10]).
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Figure 2. Ratios of efficiency indices

It is evident from Figure 2 that the new method (12) is more efficient than
the methods (7) and (12), especially for large n. For polynomials of low degree the
methods (12) and (8) are competitive. However, dealing with multiple roots, when
ν < n, the mentioned dominance of the method (12) is significant since the compu-
tational cost of the methods (11) and (12) is decreased. The improvement is espe-
cially expressive in regard to the method (7) of Ehrlich-Aberth’s type (New/EA% -
dotted line). Having in mind the mentioned fact on the dominant efficiency of the
Nourein-like method, it follows that the proposed family of simultaneous methods
(12) is the most efficient method for the simultaneous determination of polynomial
multiple roots in the class of methods based on fixed point relations.

To demonstrate the convergence behavior of the total-step methods (5), (6),
(11) and the single-step methods (7), (8) and (12) , we have tested a number of
polynomial equations; for illustration, among a number of tested algebraic polyno-
mials we have selected three examples. To present the results of the third iteration,
we have applied the programming package Mathematica with multi-precision arith-
metic relying on the GNU multiple-precision package GMP developed by Granlund
[12]. The comparison of the newly proposed methods (11) and (12) with a quadrat-
ically one-root-at-time method is presented in Example 3 in Section 4.

As a measure of accuracy of the obtained approximations, we calculated Eu-
clid’s norm

e(k) := ||z(k) − ζ||2 =

( ν∑
i=1

∣∣z(k)i − ζi
∣∣2)1/2

(k = 0, 1, . . .),

where z(k) =
(
z
(k)

1
, . . . , z

(k)
ν

)
and ζ = (ζ1, . . . , ζν). In order to find suitable initial

approximations we have used inclusion disks {z : |z| ≤ R}, centered at the origin,
that contain all roots of a given polynomial P (z) = zn+ an−1z

n−1+ · · ·+ a1z+ a0.

Here the radius R is determined using one of 45 formulae (as functions of polynomial
coefficients) given in the book [22, Sec. 1.10]. One of the often used formulae is
given by

R = 2 max
1≤λ≤n

∣∣an−λ

∣∣1/λ,
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which can be found in many papers and books (see, e.g., [13]). Complete searching
multi-stage procedures have been described, e.g., in [8] and [35].

Example 1. The total-step methods (5), (6), (11) and their single-step variants (7), (8)
and (12) were applied for the simultaneous approximation to the roots of the polynomial

f13(z) = (z − 2)3(z2 + 1)5.

The roots of this polynomial are 2 and ±i with the multiplicities 3 and 5, respectively.
The initial approximations were selected to be

z
(0)

1 = 2.3− 0.3i, z
(0)

2 = 0.3 + 1.3i, z
(0)

3 = 0.3− 1.3i.

The entries of the errors obtained in the first three iterations are given in Table 3, where

the denotation A(−q) means A× 10−q . The error of the starting points is e(0) ≈ 0.735.

Total-step methods → (5) (6) (11)

e(1) 2.53(−2) 9.39(−3) 1.59(−3)
e(2) 1.62(−6) 5.14(−10) 3.42(−19)
e(3) 3.33(−18) 4.34(−39) 5.64(−113)

Single-step methods → (7) (8) (12)

e(1) 1.52(−2) 7.88(−3) 7.81(−4)
e(2) 3.20(−7) 1.30(−10) 2.20(−21)
e(3) 7.67(−22) 9.82(−48) 5.50(−145)

Table 3. Euclid’s norm of the errors – Example 1

Example 2. The same methods were applied for the simultaneous approximation to the
roots of the polynomial

f20(z) = z
20 + 4z19 − 20z18 − 72z17 + 252z16 + 664z15 − 2092z14 − 3440z13

+ 12450z12 + 9520z11 − 51476z10 − 1264z9 + 142360z8 − 82488z7

− 228612z6 + 279376z5 + 117237z4 − 337300z3 + 77400z2 + 135000z − 67500.

The roots of this polynomial are −1, −3, 1±i, 1, ±2±i, with the multiplicities 2, 3, 2, 2, 3,
2, 2, 2, 2, respectively. The starting approximations were (e(0) ≈ 0.85)

z
(0)

1 = −1.2 + 0.2i, z
(0)

2 = −2.8− 0.2i, z
(0)

3 = 1.2 + 1.2i,

z
(0)

4 = 1.2− 1.2i, z
(0)

5 = 0.8 − 0.2i, z
(0)

6 = 1.8 + 1.2i,

z
(0)

7 = 1.8− 1.2i, z
(0)

8 = −2.2 + 0.8i, z
(0)

9 = −2.2− 0.8i.

The entries of the maximal errors obtained in the first three iterations are given in Table

4.
Total-step methods → (5) (6) (11)

e(1) 1.11(−1) 7.13(−2) 4.72(−2)
e(2) 2.03(−4) 3.16(−6) 4.21(−9)
e(3) 2.49(−12) 3.44(−23) 3.95(−51)

Single-step methods → (7) (8) (12)

e(1) 8.48(−1) 5.59(−2) 4.15(−2)
e(2) 6.47(−5) 7.61(−7) 2.95(−9)
e(3) 5.10(−15) 7.23(−27) 2.75(−52)

Table 4. Euclid’s norm of the errors – Example 2
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Example 3. In order to find the roots of the polynomial

f18(z) = z
18 + (2− 2i)z17 − 14z16 − (18− 26i)z15 + (80− 12i)z14

+ (26− 118i)z13 − (238− 136i)z12 + (146 + 182i)z11 + (307− 476i)z10

− (380− 160i)z9 + (236 + 320i)z8 + (32− 712i)z7 − (804 − 880i)z6

+ (512 + 96i)z5 − (80 + 832i)z4 − (1024 − 1152i)z3 − (448− 256i)z2

− (1024− 512i)z + (−768 + 1024i)

we applied the same methods as in Examples 1 and 2.

Total-step methods → (5) (6) (11)

e(1) 8.75(−2) 4.76(−2) 2.36(−2)
e(2) 2.44(−4) 1.13(−6) 1.17(−10)
e(3) 2.02(−12) 7.33(−25) 1.05(−61)

Single-step methods → (7) (8) (12)

e(1) 5.33(−2) 3.45(−2) 2.19(−2)
e(2) 4.61(−5) 4.62(−7) 1.25(−10)
e(3) 1.20(−14) 3.33(−28) 2.60(−67)

Schröder’s method → (31)

e(1) 0.463

e(2) 0.292

e(3) 0.203

e(4) 0.236

e(5) 0.152

e(6) 0.141

e(7) 5.05(−2)
e(8) 8.64(−3)
e(9) 2.54(−4)
e(10) 2.13(−7)
e(11) 1.50(−13)
e(12) 7.43(−26)

Table 5. Euclid’s norm of the errors – Example 3

The roots of the polynomial f18(z) are −1, −2, 2, 1± i, ±i, −2+ i with the respec-
tive multiplicities 2, 3, 3, 2, 2, 2, 2, 2. The following starting approximations were selected
(e(0) = 0.8)

z
(0)

1 = −1.2 + 0.2i, z
(0)

2 = −2.2 + 0.2i, z
(0)

3 = 2.2 − 0.2i, z
(0)

4 = 1.2 + 1.2i,

z
(0)

5 = 1.2− 1.2i, z
(0)

6 = −0.2 + 0.8i, z
(0)

7 = 0.2 − 0.8i, z
(0)

8 = −2.2 + 0.8i.

For comparison purpose, we have also applied Newton’s like (or Schröder’s) method
for multiple roots

(31) z
(k+1)

i = z
(k)

i − μi

f(z
(k)

i )

f ′(z
(k)

i )
(k = 0, 1, . . . , i ∈ Iν),
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The stopping criterions have been given by the inequalities e(k) < τ1 = 10−9 and e(k) <

τ2 = 10−24. The entries of the maximal errors obtained in the first three iterations are

given in Table 5.

From Table 5 we observe that the new methods (11) and (12) fulfilled the
first criterion (τ1 = 10−9) after the second iteration. Since the order of (11) is
six, it could be expected that quadratically convergent Schröder’s method (31) will
satisfy this criterion after 6 iterations (exactly, three times more). However, it
required even 11 iterations. The reason for this poor result is too slow convergence
of particular Schröder’s sequences, which increases the total errors e(k) in the first
iterations. Faster (in fact, quadratical) convergence of the method (31) begins after
7th iteration.

To fulfil the second termination criterion τ1 = 10−24 the proposed methods
(11) and (12) require 3 iterations, while Schröder’s method meets this criterion
after 12 iterations instead of (theoretically) expected 9. Even slower methods (6)
(of order four) and (7) have satisfied the second criterion after the third iteration.
Theoretically expected iterations of Schröder’s method in this case had to be 6.

Both experiments point to the better convergence properties of simultaneous
methods compared to one-root-at-time Schröder’s method, as discussed in the Intro-
duction. Besides this preference, we recall the advantage of simultaneous methods
of lending themselves to parallel computation.

From Tables 3–5 and a number of tested polynomial equations we can con-
clude that the proposed methods (11) and (12) produce approximations of con-
siderably high accuracy; two iterative steps are usually sufficient in solving most
practical problems when initial approximations are reasonably close to the roots.
The results of the third iteration are given only to demonstrate very fast conver-
gence of the new methods (11) and (12). The presented analysis of computational
efficiency shows that the methods (11) and (12) are more efficient than all previ-
ously developed methods for multiple roots based on fixed point relations.
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