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Abstract

In this paper, we give a new additive formula for the Drazin inverse
under conditions weaker than those used in some current literature on
this subject. Also, we obtain representations for the Drazin inverse of
a complex block matrix having generalized Schur complement equal to
zero.
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1 Introduction

Let Cn×n denote the set of all n × n complex matrices and let A ∈ Cn×n. By
R(A),N (A) and rank(A) we denote the range, the null space and the rank of
matrix A, respectively. The smallest nonnegative integer k such that rank(Ak) =
rank(Ak+1), denoted by ind(A), is called the index of matrix A. If ind(A) = k,
then there exists the unique matrix Ad ∈ Cn×n, which satisfies the following
relations:

Ak+1Ad = Ak, AdAAd = Ad, AAd = AdA.

The matrix Ad is called the Drazin inverse of A (see [1]). If ind(A) = 1, then
the Drazin inverse of A is called the group inverse of A and it is denoted by A#.
Clearly, ind(A) = 0 if and only if A is nonsingular, and in that case Ad = A−1.
In this paper we use notation Aπ = I−AAd to denote the projection on N (Ak)
along R(Ak).

The Drazin inverse of square complex matrices has applications in several
areas, such as differential and difference equations, Markov chains and iterative
methods (see [2, 3, 4, 5, 6, 7]). For applications of the Drazin inverse of a 2× 2
block matrix we refer readers to [2, 8, 9].
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Suppose P,Q ∈ Cn×n. In 1958, Drazin (see [10]) studied the problem of
finding the formula for (P +Q)d and he offered the formula (P +Q)d = P d+Qd,
which is valid when PQ = QP = 0. In the present, there is no formula for (P +
Q)d without any side condition for matrices P and Q, so this problem remains
open. However, many authors have considered this problem and provided a
formula for (P +Q)d with some specific conditions for matrices P and Q. Some
of them are as follows:

(i) PQ = 0 [6];

(ii) Q2 = 0 and P 2Q = 0 [11];

(iii) PQ2 = 0 and P 2Q = 0 [12];

(iv) PQ2 = 0 and PQP = 0 [13].

In this paper we derive a formula for (P + Q)d under conditions P 2QP = 0,
P 2Q2 = 0, PQ2P = 0 and PQ3 = 0 which are weaker than those from previous
list.

Another aim–objective of this paper is to derive a representation of the
Drazin inverse of 2× 2 complex block matrix

M =

[
A B
C D

]
, (1.1)

where A and D are square matrices, not necessarily of the same size. This
problem was firstly posed in 1979 by Campbell and Meyer [3]. According to
current literature, there has been no formula for Md without any side conditions
for blocks of matrix M . Special cases of this open problem have been considered,
so at present time there are many formulas for Md under specific conditions for
blocks of M . In some papers the expression of Md is given under conditions
which concern the generalized Schur complement of matrix M defined by S =
D − CAdB. Here we list some of them:

(i) CAπ = 0, AπB = 0 and S = 0 [14];

(ii) CAπB = 0, AAπB = 0 and S = 0 [9];

(iii) CAπB = 0, CAπA = 0 and S = 0 [9];

(iv) CAπBC = 0, AAπBC = 0 and S = 0 [13];

(v) BCAπB = 0, BCAπA = 0 and S = 0 [13];

(vi) ABCAπ = 0, BCAπ is nilpotent and S = 0 [11];

(vii) AπBCA = 0, AπBC is nilpotent and S = 0 [11];

(viii) ABCAπ = 0, AπABC = 0 and S = 0 [15];

(ix) ABCAπ = 0, CBCAπ = 0 and S = 0 [15].
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In this paper we derive some new representations for Md, which generalizes
representations given under conditions from previous list.

Before we give our main results, we state some auxiliary lemmas as follows.

Lemma 1.1 [1] Let A ∈ Cm×n, B ∈ Cn×m. Then (AB)d = A((BA)2)dB.

Lemma 1.2 [6] Let P,Q ∈ Cn×n be such that ind(P ) = r and ind(Q) = s. If
PQ = 0 then

(P + Q)d =

s−1∑
i=0

QπQi(P d)i+1 +

r−1∑
i=0

(Qd)i+1P iPπ.

Lemma 1.3 [14] Let M be a matrix of the form (1.1), such that S = 0. If
AπB = 0 and CAπ = 0, then

Md =

[
I

CAd

] (
(AW )d

)2
A
[
I AdB

]
,

where W = AAd + AdBCAd.

2 Additive results

In this section we investigate the Drazin inverse of the sum of two matrices.
The following theorem is the main tool in our sequel development.

Theorem 2.1 Let P,Q ∈ Cn×n. If P 2QP = 0, P 2Q2 = 0, PQ2P = 0 and
PQ3 = 0 then

(P + Q)d =

ind((P+Q)Q)−1∑
i=0

((P + Q)Q)π((P + Q)Q)i(((P + Q)P )d)i+1

+

ind((P+Q)P )−1∑
i=0

(((P + Q)Q)d)i+1((P + Q)P )i((P + Q)P )π

 (P + Q),

where for n ∈ N

(((P + Q)P )d)n =

ind(QP )−1∑
i=0

(QP )π(QP )i(P d)2(i+n) +

ind(P 2)−1∑
i=0

((QP )d)i+nP 2iPπ

−
n−1∑
i=1

((QP )d)i(P d)2(n−i),

(((P + Q)Q)d)n =

ind(Q2)−1∑
i=0

QπQ2i((PQ)d)i+n +

ind(PQ)−1∑
i=0

(Qd)2(i+n)(PQ)i(PQ)π

−
n−1∑
i=1

(Qd)2i((PQ)d)n−i,
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and

((P + Q)P )π = (QP )πPπ −
ind(QP )−2∑

i=0

(QP )π(QP )i+1(P d)2(i+1)

−
ind(P 2)−2∑

i=0

((QP )d)i+1P 2(i+1)Pπ,

((P + Q)Q)π = Qπ(PQ)π −
ind(Q2)−2∑

i=0

QπQ2(i+1)((PQ)d)i+1

−
ind(PQ)−2∑

i=0

(Qd)2(i+1)(PQ)i+1(PQ)π.

Proof. Using Lemma 1.1, we have that (P + Q)d = (P + Q)((P + Q)d)2 =
(P +Q)(P (P +Q)+Q(P +Q))d. Denote by F = P (P +Q) and G = Q(P +Q).
Since FG = 0, matrices F and G satisfy the condition of Lemma 1.2 and
therefore

(P + Q)d = (P + Q)

ind(G)−1∑
i=0

GπGi(F d)i+1 +

ind(F )−1∑
i=0

(Gd)i+1F iFπ

 .

Furthermore, by Lemma 1.1 we have F d = P (((P +Q)P )d)2(P +Q) and Gd =
Q(((P +Q)Q)d)2(P +Q). If we denote by F1 = (P +Q)P and G1 = (P +Q)Q,
we get F d = P (F d1 )2(P + Q) and Gd = Q(Gd1)2(P + Q). Moreover,

(F d)n = P (F d1 )n+1(P + Q), (Gd)n = Q(Gd1)n+1(P + Q),

for every n ∈ N. After some computations we get

(P + Q)d = (P + Q)

P (F d1 )2 −QGd1F
d
1 +

ind(G1)−1∑
i=0

QGπ1G
i
1(F d1 )i+2

+

ind(F1)−1∑
i=0

Q(Gd1)i+2F i1F
π
1

 (P + Q)

=

ind(G)−1∑
i=0

GπGi(F d)i+1 +

ind(F )−1∑
i=0

(Gd)i+1F iFπ

 (P + Q).(2.1)

Notice that F1 = P 2 + QP . Since P 2QP = 0, matrices P 2 and QP satisfy
condition of Lemma 1.2. After applying Lemma 1.2 we obtain

(F d1 )n =

ind(QP )−1∑
i=0

(QP )π(QP )i(P d)2(i+n) +

ind(P 2)−1∑
i=0

((QP )d)i+nP 2iPπ

−
n−1∑
i=1

((QP )d)i(P d)2(n−i),

(2.2)
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for every n ∈ N. Similarly, from PQ3 = 0 and Lemma 1.2, for every n ∈ N we
have

(Gd1)n =

ind(Q2)−1∑
i=0

QπQ2i((PQ)d)i+n +

ind(PQ)−1∑
i=0

(Qd)2(i+n)(PQ)i(PQ)π

−
n−1∑
i=1

(Qd)2i((PQ)d)n−i.

(2.3)

Substituting (2.2) and (2.3) into (2.1) we get that the statement of the theorem
is valid.�

The next theorem is a symmetrical formulation of Theorem 2.1.

Theorem 2.2 Let P,Q ∈ Cn×n. If PQP 2 = 0, Q2P 2 = 0, PQ2P = 0 and
Q3P = 0 then

(P + Q)d = (P + Q)

ind(Q(P+Q))−1∑
i=0

((P (P + Q))d)i+1(Q(P + Q))i(Q(P + Q))π

+

ind(P (P+Q))−1∑
i=0

(P (P + Q))π(P (P + Q))i((Q(P + Q))d)i+1

 ,

where for n ∈ N

((P (P + Q))d)n =

ind(PQ)−1∑
i=0

(P d)2(i+n)(PQ)i(PQ)π +

ind(P 2)−1∑
i=0

PπP 2i((PQ)d)i+n

−
n−1∑
i=1

(P d)2(n−i)((PQ)d)i,

((Q(P + Q))d)n =

ind(Q2)−1∑
i=0

((QP )d)i+nQ2iQπ +

ind(QP )−1∑
i=0

(QP )π(QP )i(Qd)2(i+n)

−
n−1∑
i=1

((QP )d)n−i(Qd)2i,

and

(P (P + Q))π = Pπ(PQ)π −
ind(PQ)−2∑

i=0

(P d)2(i+1)(PQ)i+1(PQ)π

−
ind(P 2)−2∑

i=0

PπP 2(i+1)((PQ)d)i+1,
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(Q(P + Q))π = (QP )πQπ −
ind(Q2)−2∑

i=0

((QP )d)i+1Q2(i+1)Qπ

−
ind(QP )−2∑

i=0

(QP )π(QP )i+1(Qd)2(i+1).

Notice that one special case of Theorem 2.1 is when matrices P and Q satisfy
the conditions P 2QP = 0 and PQ2 = 0. Similarly, a special case of Theorem 2.2
is when PQP 2 = 0 and Q2P = 0 is valid. The following additive formulas are
corollaries of these cases, respectively, which we will use in section 3 to obtain
representations for the Drazin inverse of block matrix.

Corollary 2.1 Let P,Q ∈ Cn×n. If P 2QP = 0 and Q2 = 0, then

(P + Q)d =

(
r−1∑
i=0

(
((PQ)d)i+1 + ((QP )d)i+1

)
P 2iPπ

+

s−1∑
i=0

(
(PQ)π(PQ)i + (QP )π(QP )i

)
(P d)2(i+1) − (P d)2

)
(P + Q),

where r = ind(P 2) and s = max {ind(PQ), ind(QP )}.

Corollary 2.2 Let P,Q ∈ Cn×n. If PQP 2 = 0 and Q2 = 0, then

(P + Q)d =(P + Q)

(
r−1∑
i=0

PπP 2i
(
((PQ)d)i+1 + ((QP )d)i+1

)
+

s−1∑
i=0

(P d)2(i+1)
(
(PQ)i(PQ)π + (QP )i(QP )π

)
− (P d)2

)
,

where r = ind(P 2) and s = max {ind(PQ), ind(QP )}.

3 Representations for the Drazin inverse of block
matrix

Through this section we assume that matrix M is defined by (1.1), where A
and D are square matrices and generalized Schur complement S = D − CAdB
of matrix M is equal to zero.

In [14] Miao offered a representation for Md under conditions CAπ = 0
and AπB = 0. This result was generalized in [9], where authors gave the
formula for Md under conditions CAπA = 0 and CAπB = 0. Yang and Liu [13]
extended this result and derived the representation for Md when BCAπA = 0
and BCAπB = 0 holds. The following theorem is a generalization of this result.
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Theorem 3.1 Let M be a matrix of the form (1.1) such that S = 0. If
ABCAπA = 0 and ABCAπB = 0, then

Md =

([
(BCAπ)π 0

−(CAπB)dCAπA (CAπB)π

]
(P d)2

+

t−1∑
i=0

[
(BCAπ)π(BCAπ)i+1 0

(CAπB)π(CAπB)iCAπA (CAπB)π(CAπB)i+1

]
(P d)2i+4

+

r−1∑
i=0

[
((BCAπ)d)i+1 0

((CAπB)d)i+2CAπA ((CAπB)d)i+1

]
P 2iPπ

)
M,

where

P =

[
A B

CAdA CAdB

]
,

(P d)n =

I +

l−1∑
j=0

[
0 AjAπB
0 0

]
(P d1 )j+1

 (P d1 )n,

(P d1 )n =

[
I

CAd

]
((AW )d)n+1A

[
I AdB

]
, W = AAd + AdBCAd,

for every n ∈ N, and r = ind(P 2), l = ind(A), t = max {ind(CAπB), ind(BCAπ)− 1}.

Proof. Consider the splitting of matrix M

M =

[
A B
C CAdB

]
=

[
A B

CAdA CAdB

]
+

[
0 0

CAπ 0

]
.

If we denote by P =

[
A B

CAdA CAdB

]
and Q =

[
0 0

CAπ 0

]
, we have that

P 2QP = 0 and Q2 = 0. Hence, the conditions of Corollary 2.1 are satisfied and

(P + Q)d =

(
r−1∑
i=0

(
((PQ)d)i+1 + ((QP )d)i+1

)
P 2iPπ

+

s−1∑
i=0

(
(PQ)π(PQ)i + (QP )π(QP )i

)
(P d)2(i+1) − (P d)2

)
M,

(3.1)

where r = ind(P 2) and s = max {ind(PQ), ind(QP )}.
Obviously Qd = 0 and Qπ = I. If we split matrix P as

P =

[
A B

CAdA CAdB

]
=

[
A2Ad AAdB
CAdA CAdB

]
+

[
AAπ AπB

0 0

]
,

and denote by P1 =

[
A2Ad AAdB
CAdA CAdB

]
, P2 =

[
AAπ AπB

0 0

]
, we get P1P2 =

0 and P2 is (l + 1)-nilpotent. After using Lemma 1.2 we get

(P d)n =

(
I +

l−1∑
i=0

P i+1
2 (P d1 )i+1

)
(P d1 )n,
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for n ∈ N. Notice that matrix P1 satisfy conditions of Lemma 1.3, so after
applying it we obtain

(P d1 )n =

[
I

CAd

]
((AW )d)n+1A

[
I AdB

]
.

Therefore,

(P d)n =

I +

l−1∑
j=0

[
0 AiAπB
0 0

]
(P d1 )j+1

 (P d1 )n. (3.2)

After computation we get:

(PQ)n =


[

BCAπ 0
CAdBCAπ 0

]
, if n = 1[

(BCAπ)i 0
0 0

]
, if n ≥ 2

,

((PQ)d)n =

[
((BCAπ)d)n 0

0 0

]
, (PQ)π =

[
(BCAπ)π 0

0 I

]
,

(QP )n =

[
0 0

(CAπB)n−1CAπA (CAπB)n

]
,

((QP )d)n =

[
0 0

((CAπB)d)n+1CAπA ((CAπB)d)n

]
,

(QP )π =

[
I 0

−(CAπB)dCAπA (CAπB)π

]
.

After substituting this expressions and (3.2) into (3.1) we complete the proof.
�

Remark 1 Bu et al. offered formulas for Md under conditions ABCAπ = 0,
AπABC = 0 [15, Theorem 4.1] and under conditions ABCAπ = 0, CBCAπ = 0
[15, Theorem 4.3]. In [11, Theorem 3.3] the representation for Md is given
under conditions ABCAπ = 0, BCAπ is nilpotent. We remark that a special
case of Theorem 3.1 is when blocks of matrix M satisfy the condition ABCAπ =
0. Therefore the conditions AπABC = 0 from [15, Theorem 4.1], CBCAπ = 0
from [15, Theorem 4.3] and BCAπ is nilpotent from [11, Theorem 3.3] are
superfluous.

The next theorem is an extension of a case when CAπBC = 0 and AAπBC =
0 hold, which was studied by Yang and Liu [13].

Theorem 3.2 Let M be a matrix defined by (1.1), such that S = 0. If AAπBCA =
0 and CAπBCA = 0, then

Md =M

(
(P d)2

[
(AπBC)π −AAπB(CAπB)d

0 (CAπB)π

]
+

t−1∑
i=0

(P d)2i+4

[
(AπBC)i+1(AπBC)π AAπB(CAπB)i(CAπB)π

0 (CAπB)i+1(CAπB)π

]

+

r−1∑
i=0

PπP 2i

[
((AπBC)d)i+1 AAπB((CAπB)d)i+2

0 ((CAπB)d)i+1

])
,
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where

P =

[
A AAdB
C CAdB

]
,

(P d)n =(P d1 )n

I +

l−1∑
j=0

(P d1 )j+1

[
0 0

CAjAπ 0

] ,

(P d1 )n =

[
I

CAd

]
((AW )d)n+1A

[
I AdB

]
, W = AAd + AdBCAd,

for every n ∈ N, and r = ind(P 2), l = ind(A), t = max {ind(CAπB), ind(AπBC)− 1}.

Proof. We can split matrix M as

M =

[
A B
C CAdB

]
=

[
A AAdB
C CAdB

]
+

[
0 AπB
0 0

]
.

If we denote by P =

[
A AAdB
C CAdB

]
and Q =

[
0 AπB
0 0

]
, we have that

matrices P and Q satisfy Corollary 2.2. Using similar method as in Theorem
3.1 we get that the statement of the theorem is true. �

Remark 2 Mart́ınez–Serrano and Castro-González derived a formula for Md

under conditions AπBCA = 0 and AπBC is nilpotent [11, Corollary 3.4]. No-
tice that Theorem 3.2 is an extension of a case when AπBCA = 0. Hence, the
condition AπBC is nilpotent from [11, Corollary 3.4] is superfluous.

4 Numerical example

In this section we give a numerical example to demonstrate the application of
Theorem 3.1.

Example Consider the block matrix M of a form (1.1) , where

A =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

 , B =


1 0 0 0
0 0 0 1
1 0 0 0
0 0 0 0

 ,

C =


1 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

 , D =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

By computing we get that generalized Schur complement S = D−CAdB is
equal to zero and ABCAπ = 0. Since AπABC 6= 0, CBCAπ 6= 0 and matrix
BCAπ is not nilpotent, formulas for Md from [15, Theorem 4.1], [15, Theorem
4.3] and [11, Theorem 3.3] fail to apply. However, the conditions of Theorem
3.1 are satisfied, so we can apply it.
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We have that ind(A) = 2 and

Ad =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

Also, we get that ind(P ) = 3 and

P d =



1
4 0 0 0 1

4 0 0 0
0 0 0 0 0 0 0 0
1
8 0 0 0 1

8 0 0 0
1
16 0 0 0 1

16 0 0 0
1
4 0 0 0 1

4 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


.

After applying Theorem 3.1, we get

Md =



1
4 0 0 0 1

4 0 0 0
0 0 0 0 0 0 0 0
1
8 0 0 0 1

8 0 0 0
1
16 0 0 0 1

16 0 0 0
1
4 0 0 0 1

4 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0


.
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