# Representations for the Drazin inverse of block matrix<sup>\*</sup>

Jelena Ljubisavljević<sup>†</sup>, Dragana S. Cvetković-Ilić<sup>‡</sup>

#### Abstract

In this paper we offer new representations for Drazin inverse of block matrix, which recover some representations from current literature on this subject.

2000 Mathematics Subject Classification: 15A09 Key words: Drazin inverse; block matrix; representation.

# 1 Introduction

Let A be a square complex matrix. By rank(A) we denote the rank of a matrix A. The index of a matrix A, denoted by  $\operatorname{ind}(A)$ , is the smallest nonnegative integer k such that  $\operatorname{rank}(A^{k+1}) = \operatorname{rank}(A^k)$ . For every matrix  $A \in \mathbb{C}^{n \times n}$ , such that  $\operatorname{ind}(A) = k$ , there exists the unique matrix  $A^d \in \mathbb{C}^{n \times n}$ , which satisfies following relations:

$$A^{k+1}A^d = A^k, \ A^dAA^d = A^d, \ AA^d = A^dA.$$

Matrix  $A^d$  is called the Drazin inverse of matrix A (see [1]). In the case  $\operatorname{ind}(A) = 1$ , the Drazin inverse of A is called the group inverse of A, denoted by  $A^{\#}$  or  $A^g$ . The case  $\operatorname{ind}(A) = 0$  is valid if and only if A is nonsingular, so in that case  $A^d$  reduces to  $A^{-1}$ . Throughout this paper we suppose that  $A^0 = I$ , where I is identity matrix, and  $\sum_{i=1}^{k-j} * = 0$ , for  $k \leq j$ .

The theory of Drazin inverse of a square matrix has numerous applications, such as in singular differential equations and singular difference

 $<sup>^{*}\</sup>mathrm{supported}$  by Grant No. 174007 of the Ministry of Science and Technological Development, Republic of Serbia

<sup>&</sup>lt;sup>†</sup>University of Niš, Faculty of Medicine

<sup>&</sup>lt;sup>‡</sup>University of Niš, Faculty of Science and Mathematics

equations, Markov chains and iterative methods (see [2, 4, 5, 6, 8, 9]). An application of the Drazin inverse of a  $2 \times 2$  block matrix can be found in [2, 3, 7].

In 1979 Campbell and Meyer[4] posed the problem of finding an explicit representation for the Drazin inverse of  $2 \times 2$  complex matrix

$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}, \tag{1.1}$$

in terms of its blocks, where A and D are square matrices, not necessarily of the same size. Until now, there has been no formula for  $M^d$  without any side conditions for blocks of matrix M. However, many papers studied special cases of this open problem and offered a formula for  $M^d$  under some specific conditions for blocks of M. Here we list some of them:

- (i) B = 0 (or C = 0) (see [10, 11]);
- (ii) BC = 0, BD = 0 and DC = 0 (see [6]);
- (iii) BC = 0, DC = 0 (or BD = 0) and D is nilpotent (see [7]);
- (iv) BC = 0 and DC = 0 (see [12]);
- (v) CB = 0 and AB = 0 (or CA = 0) (see [12, 13]);
- (vi) BCA = 0, BCB = 0, DCA = 0 and DCB = 0 (see [14]);
- (vii) ABC = 0, CBC = 0, ABD = 0 and CBD = 0 (see [14]);
- (viii) BCA = 0, BCB = 0, ABD = 0 and CBD = 0 (see [15]);
- (ix) BCA = 0, DCA = 0, CBC = 0, and CBD = 0 (see [15]);
- (x) BCA = 0, BD = 0 and DC = 0 (or BC is nilpotent) (see [16]);
- (xi) BCA = 0, DC = 0 and D is nilpotent (see [16]);
- (xii) ABC = 0, DC = 0 and BD = 0 (or BC is nilpotent, or D is nilpotent) (see [17]);
- (xiii) BCA = 0 and BD = 0 (see [18]);
- (xiv) ABC = 0 and DC = 0 (or BD = 0) (see [18, 19]).

In this paper we derive representations for  $M^d$  which recover representations from previous list.

### 2 Key lemmas

In order to prove our main results, we first state some lemmas.

**Lemma 2.1** [14] Let  $P, Q \in \mathbb{C}^{n \times n}$  be such that ind(P) = r and ind(Q) = s. If PQP = 0 and  $PQ^2 = 0$  then

$$(P+Q)^d = Y_1 + Y_2 + \left(Y_1(P^d)^2 + (Q^d)^2 Y_2 - Q^d(P^d)^2 - (Q^d)^2 P^d\right) PQ,$$

where

$$Y_1 = \sum_{i=0}^{s-1} Q^{\pi} Q^i (P^d)^{i+1}, \ Y_2 = \sum_{i=0}^{r-1} (Q^d)^{i+1} P^i P^{\pi}.$$
 (2.1)

**Lemma 2.2** [14] Let  $P, Q \in \mathbb{C}^{n \times n}$  be such that ind(P) = r and ind(Q) = s. If QPQ = 0 and  $P^2Q = 0$  then

$$(P+Q)^d = Y_1 + Y_2 + PQ\left(Y_1(P^d)^2 + (Q^d)^2Y_2 - Q^d(P^d)^2 - (Q^d)^2P^d\right),$$

where  $Y_1$  and  $Y_2$  are defined by (2.1).

**Lemma 2.3** [20] Let  $M \in \mathbb{C}^{n \times n}$  be such that  $M = \begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix}$ ,  $B \in \mathbb{C}^{p \times (n-p)}$ ,  $C \in \mathbb{C}^{(n-p) \times p}$ . Then

$$M^{d} = \left[ \begin{array}{cc} 0 & B(CB)^{d} \\ (CB)^{d}C & 0 \end{array} \right].$$

Deng and Wei [21] gave representations for the Drazin inverse of upper anti-triangular block matrix under some specific conditions. Here we state these results and some additional facts, which we will be useful to prove our results. Consider the block matrix of a form (1.1), where D = 0:

$$M = \begin{bmatrix} A & B \\ C & 0 \end{bmatrix}.$$
 (2.2)

**Lemma 2.4** [21] Let  $M \in \mathbb{C}^{n \times n}$  be matrix of a form (2.2). If ABC = 0, then

$$M^d = \left[ \begin{array}{cc} \Phi A & \Phi B \\ C \Phi & C \Phi^2 A B \end{array} \right],$$

where

$$\Phi = (A^2 + BC)^d = \sum_{i=0}^{t_1 - 1} (BC)^{\pi} (BC)^i (A^d)^{2i+2} + \sum_{i=0}^{\nu_1 - 1} ((BC)^d)^{i+1} A^{2i} A^{\pi}$$
(2.3)

and  $t_1 = ind(BC), \nu_1 = ind(A^2).$ 

**Remark 1** Let M be matrix of a form (2.2). If conditions of Lemma 2.4 are satisfied, we have that:

$$M^{2k+1} = \begin{bmatrix} (A^2 + BC)^k A & (A^2 + BC)^k B \\ C(A^2 + BC)^k & C(A^2 + BC)^{k-1} AB \end{bmatrix}, \text{ for } k \ge 1$$

and

$$M^{2k} = \begin{bmatrix} (A^2 + BC)^k & (A^2 + BC)^{k-1}AB \\ C(A^2 + BC)^{k-1}A & C(A^2 + BC)^{k-1}B \end{bmatrix}, \text{ for } k \ge 1.$$

Notice that  $(A^2 + BC)^k = \sum_{j=0}^k (BC)^{k-j} A^{2j}$ , for  $k \ge 0$ . Also,  $(A^2 + BC)^{\pi} = A^{\pi} - BC\Phi = (BC)^{\pi} - \Phi A^2$ . We can check that

$$\Phi^{k} = \sum_{i=0}^{t_{1}-1} (BC)^{\pi} (BC)^{i} (A^{d})^{2i+2k} + \sum_{i=0}^{\nu_{1}-1} ((BC)^{d})^{i+k} A^{2i} A^{\pi} - \sum_{i=1}^{k-1} ((BC)^{d})^{k-i} (A^{d})^{2i},$$

for  $k \geq 1$ . Therefore we have

$$(M^d)^{2k+1} = \left[ \begin{array}{cc} \Phi^{k+1}A & \Phi^{k+1}B \\ C\Phi^{k+1} & C\Phi^{k+2}AB \end{array} \right], \ \textit{for} \ k \ge 0$$

and

$$(M^d)^{2k} = \begin{bmatrix} \Phi^k & \Phi^{k+1}AB \\ C\Phi^{k+1}A & C(\Phi^{k+1}B \end{bmatrix}, \text{ for } k \ge 1.$$

**Lemma 2.5** [21] Let  $M \in \mathbb{C}^{n \times n}$  be as in (2.2). If BCA = 0, then

$$M^d = \left[ \begin{array}{cc} A\Omega & \Omega B \\ C\Omega & CA\Omega^2 B \end{array} \right],$$

where

$$\Omega = (A^2 + BC)^d = \sum_{i=0}^{t_1 - 1} (A^d)^{2i+2} (BC)^i (BC)^\pi + \sum_{i=0}^{\nu_1 - 1} A^\pi A^{2i} ((BC)^d)^{i+1}$$
(2.4)

and  $t_1 = \operatorname{ind}(BC)$ ,  $\nu_1 = \operatorname{ind}(A^2)$ .

**Remark 2** Let M be matrix of a form (2.2). If conditions of Lemma 2.5 hold, we have that:

$$M^{2k+1} = \begin{bmatrix} A(A^2 + BC)^k & (A^2 + BC)^k B\\ C(A^2 + BC)^k & CA(A^2 + BC)^{k-1}B \end{bmatrix}, \text{ for } k \ge 1$$

and

$$M^{2k} = \begin{bmatrix} (A^2 + BC)^k & A(A^2 + BC)^{k-1}B\\ CA(A^2 + BC)^{k-1} & C(A^2 + BC)^{k-1}B \end{bmatrix}, \text{ for } k \ge 1.$$

Clearly,  $(A^2 + BC)^k = \sum_{j=0}^k A^{2j} (BC)^{k-j}$ , for  $k \ge 0$ . Also  $(A^2 + BC)^{\pi} = A^{\pi} - \Omega BC = (BC)^{\pi} - A^2 \Omega$ . Furthermore, we have that

$$\Omega^{k} = \sum_{i=0}^{t_{1}-1} (A^{d})^{2i+2k} (BC)^{i} (BC)^{\pi} + \sum_{i=0}^{\nu_{1}-1} A^{\pi} A^{2i} ((BC)^{d})^{i+k} - \sum_{i=1}^{k-1} (A^{d})^{2i} ((BC)^{d})^{k-i} + \sum_{i=0}^{k-1} (A^{d})^{k-i} + \sum_{i=0}^{k-1} (A^{d})^$$

for  $k \geq 1$ . Hence we get that

$$(M^d)^{2k+1} = \begin{bmatrix} A\Omega^{k+1} & \Omega^{k+1}B\\ C\Omega^{k+1} & CA\Omega^{k+2}B \end{bmatrix}, \text{ for } k \ge 0$$

and

$$(M^d)^{2k} = \begin{bmatrix} \Omega^k & A\Omega^{k+1}B \\ CA\Omega^{k+1} & C\Omega^{k+1}B \end{bmatrix}, \text{ for } k \ge 1.$$

In following two lemmas we present two new representations for Drazin inverse of lower anti-triangular block matrix. Consider the block matrix of a form (1.1) such that A = 0:

$$M = \begin{bmatrix} 0 & B \\ C & D \end{bmatrix}.$$
 (2.5)

**Lemma 2.6** Let  $M \in \mathbb{C}^{n \times n}$  be matrix of a form (2.5). If DCB = 0, then

$$M^d = \left[ \begin{array}{cc} B\Psi^2 D C & B\Psi \\ \Psi C & \Psi D \end{array} \right],$$

where

$$\Psi = (D^2 + CB)^d = \sum_{i=0}^{t_2 - 1} (CB)^{\pi} (CB)^i (D^d)^{2i+2} + \sum_{i=0}^{\nu_2 - 1} ((CB)^d)^{i+1} D^{2i} D^{\pi}$$
(2.6)

and  $t_2 = \operatorname{ind}(CB)$ ,  $\nu_2 = \operatorname{ind}(D^2)$ .

**Proof.** First, notice that from DCB = 0 we have that matrices  $D^2$  and CB satisfy the conditions of Lemma 2.1. Hence we get

$$(D^{2} + CB)^{d} = \sum_{i=0}^{t_{2}-1} (CB)^{\pi} (CB)^{i} (D^{d})^{2i+2} + \sum_{i=0}^{\nu_{2}-1} ((CB)^{d})^{i+1} D^{2i} D^{\pi}.$$

Consider the splitting of matrix M

$$M = \begin{bmatrix} 0 & B \\ C & D \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & D \end{bmatrix} + \begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix} := P + Q.$$

Since DCB = 0 we have that  $PQ^2 = 0$ . Also, we have PQP = 0. Therefore matrices P and Q satisfy the conditions of Lemma 2.1 and

$$(P+Q)^{d} = Y_{1} + Y_{2} + \left(Y_{1}(P^{d})^{2} + (Q^{d})^{2}Y_{2} - Q^{d}(P^{d})^{2} - (Q^{d})^{2}P^{d}\right)PQ, \quad (2.7)$$

where  $Y_1$ ,  $Y_2$  are as in (2.1). Clearly,

$$Q^{2k} = \begin{bmatrix} (BC)^k & 0\\ 0 & (CB)^k \end{bmatrix}, \ Q^{2k+1} = \begin{bmatrix} 0 & B(CB)^k\\ (CB)^k C & 0 \end{bmatrix}, \text{ for } k \ge 0.$$

Furthermore, by Lemma 2.3 we have

$$(Q^d)^{2k} = \begin{bmatrix} B((CB)^d)^{k+1} & 0\\ 0 & ((CB)^d)^k \end{bmatrix}, \text{ for } k \ge 1,$$
$$(Q^d)^{2k+1} = \begin{bmatrix} 0 & B((CB)^d)^{k+1}\\ ((CB)^d)^{k+1}C & 0 \end{bmatrix}, \text{ for } k \ge 0.$$

After computing, we get

$$Y_{1} = \begin{bmatrix} 0 & B \sum_{i=0}^{t_{2}-1} (CB)^{\pi} (CB)^{i} (D^{d})^{2i+2} \\ 0 & \sum_{i=0}^{t_{2}-1} (CB)^{\pi} (CB)^{i} (D^{d})^{2i+1} \end{bmatrix}, \quad (2.8)$$
$$Y_{2} = \begin{bmatrix} 0 & B \sum_{i=0}^{\nu_{2}-1} ((CB)^{d})^{i+1} D^{2i} D^{\pi} \\ (CB)^{d} C & \sum_{i=0}^{\nu_{2}-1} ((CB)^{d})^{i+1} D^{2i+1} D^{\pi} \end{bmatrix}. \quad (2.9)$$

After substituting (2.8) and (2.9) into (2.7) we get that the statement of the lemma is valid.  $\square$ 

**Remark 3** Let M be matrix of a form (2.5) such that DCB = 0. Then

$$M^{2k+1} = \begin{bmatrix} B(D^2 + CB)^{k-1}DC & B(D^2 + CB)^k \\ (D^2 + CB)^k C & (D^2 + CB)^k D \end{bmatrix}, \text{ for } k \ge 1$$

and

$$M^{2k} = \begin{bmatrix} B(D^2 + CB)^{k-1}C & B(D^2 + CB)^{k-1}D \\ (D^2 + CB)^{k-1}DC & (D^2 + CB)^k \end{bmatrix}, \text{ for } k \ge 1$$

It can be checked easily that  $(D^2 + CB)^k = \sum_{j=0}^k (CB)^{k-j} D^{2j}$ , for  $k \ge 0$ , and  $(D^2 + CB)^{\pi} = D^{\pi} - CB\Psi = (CB)^{\pi} - \Psi D^2$ . Also, we have that

$$\Psi^{k} = \sum_{i=0}^{t_{2}-1} (CB)^{\pi} (CB)^{i} (D^{d})^{2i+2k} + \sum_{i=0}^{\nu_{2}-1} ((CB)^{d})^{i+k} D^{2i} D^{\pi} - \sum_{i=1}^{k-1} ((CB)^{d})^{k-i} (D^{d})^{2i} + \sum_{i=0}^{k-1} ((CB)^{i})^{2i} + \sum_{i=0}^{k-1} ((CB)^{i})^{2i}$$

for  $k \geq 1$ . Therefore we get

$$(M^d)^{2k+1} = \begin{bmatrix} B\Psi^{k+2}DC & B\Psi^{k+1} \\ \Psi^{k+1}C & \Psi^{k+1}D \end{bmatrix}, \text{ for } k \ge 0$$

and

$$(M^d)^{2k} = \begin{bmatrix} B\Psi^{k+1}C & B\Psi^{k+1}D\\ \Psi^{k+1}DC & \Psi^k \end{bmatrix}, \text{ for } k \ge 1.$$

Using the similar method as in the proof of Lemma 2.6 we can get the following result.

**Lemma 2.7** Let  $M \in \mathbb{C}^{n \times n}$  be as in (2.5). If CBD = 0, then

$$M^d = \left[ \begin{array}{cc} BD\Gamma^2 C & B\Gamma \\ \Gamma C & D\Gamma \end{array} \right],$$

where

$$\Gamma = \sum_{i=0}^{t_2-1} (D^d)^{2i+2} (CB)^i (CB)^\pi + \sum_{i=0}^{\nu_2-1} D^\pi D^{2i} ((CB)^d)^{i+1}$$
(2.10)

and  $t_2 = \operatorname{ind}(CB)$ ,  $\nu_2 = \operatorname{ind}(D^2)$ .

**Proof.** Since CBD = 0, using Lemma 2.1 we get (2.10). Now, if we split matrix M as

$$M = \begin{bmatrix} 0 & B \\ C & D \end{bmatrix} = \begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & D \end{bmatrix} := P + Q$$

we have that QPQ = 0 and  $P^2Q = 0$ . Hence, the conditions of Lemma 2.2 are satisfied. After applying Lemma 2.2 and Lemma 2.3 we complete the proof. $\Box$ 

**Remark 4** Let M be as in (2.5) and let CBD = 0. Then

$$M^{2k+1} = \left[ \begin{array}{cc} BD(D^2 + CB)^{k-1}C & B(D^2 + CB)^k \\ (D^2 + CB)^kC & D(D^2 + CB)^k \end{array} \right], \text{ for } k \ge 1$$

and

$$M^{2k} = \begin{bmatrix} B(D^2 + CB)^{k-1}C & BD(D^2 + CB)^{k-1} \\ (D^2 + CB)^{k-1}C & (D^2 + CB)^k \end{bmatrix}, \text{ for } k \ge 1$$

Clearly  $(D^2 + CB)^k = \sum_{j=0}^k D^{2j} (CB)^{k-j}$ , for  $k \ge 0$ , and  $(D^2 + CB)^{\pi} = D^{\pi} - \Gamma CB = (CB)^{\pi} - D^2 \Gamma$ . In addition, we can get that

$$\Gamma^{k} = \sum_{i=0}^{t_{2}-1} (D^{d})^{2i+2k} (CB)^{i} (CB)^{\pi} + \sum_{i=0}^{\nu_{2}-1} D^{\pi} D^{2i} ((CB)^{d})^{i+k} - \sum_{i=1}^{k-1} (D^{d})^{2i} ((CB)^{d})^{k-i},$$

for  $k \geq 1$ . Also, we can get that

$$(M^d)^{2k+1} = \begin{bmatrix} BD\Gamma^{k+2}C & B\Gamma^{k+1} \\ \Gamma^{k+1}C & D\Gamma^{k+1} \end{bmatrix}, \text{ for } k \ge 0$$

and

$$(M^d)^{2k} = \begin{bmatrix} B\Gamma^{k+1}C & BD\Gamma^{k+1} \\ D\Gamma^{k+1}C & \Gamma^k \end{bmatrix}, \text{ for } k \ge 1.$$

# **3** Representations

Consider the block matrix M of a form (1.1). Djordjević and Stanimirović [6] gave explicit representation for  $M^d$  under conditions BC = 0, BD = 0and DC = 0. This result was extended to a case BC = 0, DC = 0 (see [12]). As another generalization of these results, Yang and Liu [14] gave the representation for  $M^d$  under conditions BCA = 0, BCB = 0, DCA = 0and DCB = 0. In the next theorem we derive an explicit representation for  $M^d$  under conditions BCA = 0, DCA = 0 and DCB = 0. Therefore we can see that the condition BCB = 0 from [14] is superfluous.

**Theorem 3.1** Let M be matrix of a form (1.1) such that BCA = 0, DCA = 0 and DCB = 0. Then

$$M^{d} = \begin{bmatrix} A^{d} + \Sigma_{0}C & B\Psi + A\Sigma_{0} \\ \Psi C + CA\Sigma_{1}C + C(A^{d})^{2} & \\ -CA^{d}(B\Psi^{2}D + AB\Psi^{2})C & D^{d} + C\Sigma_{0} \end{bmatrix}$$

where

$$\Sigma_k = \left( V_1 \Psi^k + (A^d)^{2k} V_2 \right) D + A \left( V_1 \Psi^k + (A^d)^{2k} V_2 \right), \text{for } k = 0, 1, \quad (3.1)$$

$$V_1 = \sum_{i=0}^{\nu_1 - 1} A^{\pi} A^{2i} B \Psi^{i+2}, \qquad (3.2)$$

$$V_2 = \sum_{i=0}^{\mu_1 - 1} (A^d)^{2i+4} B(D^2 + CB)^i D^\pi - \sum_{i=0}^{\mu_1} (A^d)^{2i+2} B(CB)^i \Psi, \qquad (3.3)$$

 $\nu_1 = ind(A^2), \ \mu_1 = ind(D^2 + CB) \ and \ \Psi \ is \ defined \ by \ (2.6).$ 

**Proof.** Consider the splitting of matrix M

$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 0 & B \\ C & D \end{bmatrix} + \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} := P + Q.$$

Since BCA = 0 and DCA = 0 we get  $P^2Q = 0$  and QPQ = 0. Hence matrices P and Q satisfy the conditions of Lemma 2.2 and

$$(P+Q)^d = Y_1 + Y_2 + PQY_1(P^d)^2 + PQ^dY_2 - PQQ^d(P^d)^2 - PQ^dP^d, \quad (3.4)$$

where  $Y_1$  and  $Y_2$  are as in (2.1). By the assumption of the theorem DCB = 0 we have that matrix P satisfy the conditions of Lemma 2.6. After applying Lemma 2.6 and using Remark 3, we get

$$Y_1 = \begin{bmatrix} (V_1D + AV_1)C & A^{\pi}B\Psi + A(V_1D + AV_1) \\ \Psi C & \Psi D \end{bmatrix}, \qquad (3.5)$$

$$Y_2 = \begin{bmatrix} A^d + (V_2D + AV_2)C & B\Psi - A^{\pi}B\Psi + A(V_2D + AV_2) \\ 0 & 0 \end{bmatrix}, \quad (3.6)$$

where  $V_1$  and  $V_2$  are defined by (3.2) and (3.3), respectively. After substituting (3.5) and (3.6) into (3.4) and computing all elements of (3.4) we obtain the result.  $\Box$ 

As a direct corollary of the previous theorem we get the following result.

**Corollary 3.1** Let M be as in (1.1). If DCB = 0 and CA = 0 then

$$M^{d} = \left[ \begin{array}{cc} A^{d} + \Sigma_{0}C & B\Psi + A\Sigma_{0} \\ \Psi C & \Psi D \end{array} \right],$$

where  $\Sigma_0$  is defined by (3.1) and  $\Psi$  is given in (2.6).

Notice that Corollary 3.1, therefore and Theorem 3.1 is also a generalization of representation for  $M^d$  under conditions CB = 0 and CA = 0 which is given in [13].

The next result is a corollary of Theorem 3.1. Also, we can get the following result using the splitting  $M = \begin{bmatrix} 0 & 0 \\ 0 & D \end{bmatrix} + \begin{bmatrix} A & B \\ C & 0 \end{bmatrix} := P + Q$  and applying Lemma 2.1 and Lemma 2.5.

**Corollary 3.2** Let M be matrix of a form (1.1). If BCA = 0 and DC = 0 then

$$M^{d} = \begin{bmatrix} A\Omega & \Omega B + RD \\ C\Omega & D^{d} + CR \end{bmatrix},$$

where

$$\begin{split} R &= (R_1 + R_2)D + A(R_1 + R_2), \\ R_1 &= \sum_{i=0}^{\mu_2 - 1} A^{\pi} (A^2 + BC)^i B(D^d)^{2i+4} - \sum_{i=0}^{\mu_2} \Omega(BC)^i B(D^d)^{2i+2}, \\ R_2 &= \sum_{i=0}^{\nu_2 - 1} \Omega^{i+2} BD^{2i} D^{\pi}, \end{split}$$

 $\nu_2 = \operatorname{ind}(D^2), \ \mu_2 = \operatorname{ind}(A^2 + BC) \ and \ \Omega \ is \ defined \ by \ (2.4).$ 

We remark that Corollary 3.2, hence and Theorem 3.1 is also extension of results from [16], where beside conditions BCA = 0 and DC = 0 additional condition BD = 0 (or D is nilpotent) is required.

Castro-González et al. (see [16]) gave explicit representation for  $M^d$ under conditions BCA = 0, BD = 0 and BC is nilpotent (or DC = 0). This result was extended to a case when BCA = 0 and BD = 0 (see [18]). The following theorem is extension of these results.

**Theorem 3.2** Let M be matrix of a form (1.1) such that BCA = 0, ABD = 0 and CBD = 0. Then

$$M^{d} = \begin{bmatrix} A\Omega + B(F_{1} + F_{2}) & \Omega B + BD(F_{1}\Omega + (D^{d})^{2}F_{2})B \\ + B(D^{d})^{2} - BD^{d}(CA + DC)\Omega^{2}B \\ C\Omega + D(F_{1} + F_{2}) & D^{d} + (F_{1} + F_{2})B \end{bmatrix}, (3.7)$$

where

$$F_{1} = \sum_{i=0}^{\nu_{2}-1} D^{\pi} D^{2i} (CA + DC) \Omega^{i+2},$$
  

$$F_{2} = \sum_{i=0}^{\mu_{2}-1} (D^{d})^{2i+4} (CA + DC) (A^{2} + BC)^{i} (BC)^{\pi} - \sum_{i=0}^{\mu_{2}} (D^{d})^{2i+2} (CA + DC) A^{2i} \Omega,$$

 $\nu_2 = \operatorname{ind}(D^2), \ \mu_2 = \operatorname{ind}(A^2 + BC) \ and \ \Omega \ is \ defined \ by \ (2.4).$ 

**Proof.** If we split matrix M as

$$M = \left[ \begin{array}{cc} A & B \\ C & 0 \end{array} \right] + \left[ \begin{array}{cc} 0 & 0 \\ 0 & D \end{array} \right] := P + Q.$$

we have that QPQ = 0 and  $P^2Q = 0$ . Hence, matrices P and Q satisfy the conditions of Lemma 2.2. Since BCA = 0, matrix P satisfies conditions of Lemma 2.5. Using the similar method as in the proof of Theorem 3.1, after applying Lemma 2.2, Lemma 2.5 and using Remark 2, we get that (3.7) holds.  $\Box$ 

Notice that Theorem 3.2 is also generalization of representation from [15] where additional condition BCB = 0 is required.

In [15] a formula for  $M^d$  is given under conditions BCA = 0, DCA = 0, CBD = 0 and CBC = 0. In the next theorem we offer a representation for  $M^d$  under conditions BCA = 0, DCA = 0 and CBD = 0, without additional condition CBC = 0.

**Theorem 3.3** Let M be as in (1.1). If BCA = 0, DCA = 0 and CBD = 0 then

$$M^{d} = \begin{bmatrix} A^{d} + (G_{1} + G_{2})C & B\Gamma + A(G_{1} + G_{2}) \\ \Gamma C + CA(G_{1}\Gamma + (A^{d})^{2}G_{2})C \\ + C(A^{d})^{2} - CA^{d}(AB + BD)\Gamma^{2}C & D\Gamma + C(G_{1} + G_{2}) \end{bmatrix},$$

where

$$G_1 = \sum_{i=0}^{\nu_1 - 1} A^{\pi} A^{2i} (AB + BD) \Gamma^{i+2}, \qquad (3.8)$$

$$G_{2} = \sum_{i=0}^{\mu_{1}-1} (A^{d})^{2i+4} (AB+BD) (D^{2}+CB)^{i} (CB)^{\pi} - \sum_{i=0}^{\mu_{1}} (A^{d})^{2i+2} (AB+BD) D^{2i} \Gamma,$$
(3.9)

 $\nu_1 = \operatorname{ind}(A^2), \ \mu_1 = \operatorname{ind}(D^2 + CB) \ and \ \Gamma \ is \ given \ in \ (2.10).$ 

**Proof.** Using the splitting of matrix M

$$M = \begin{bmatrix} 0 & B \\ C & D \end{bmatrix} + \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} := P + Q,$$

we get that conditions of Lemma 2.2 are satisfied. Also, we have that matrix P satisfies the conditions of Lemma 2.7. Using these lemmas and Remark 4, similarly as in the proof of Theorem 3.1, we get that the statement of the theorem is valid.  $\Box$ 

**Corollary 3.3** Let M be matrix of a form (1.1). If CBD = 0 and CA = 0, then

$$M^{d} = \begin{bmatrix} A^{d} + (G_{1} + G_{2})C & B\Gamma + A(G_{1} + G_{2}) \\ \Gamma C & D\Gamma \end{bmatrix}$$

where  $\Gamma$ ,  $G_1$  and  $G_2$  are defined by (2.10), (3.8) and (3.9) respectively.

We can see that Theorem 3.3 and Corollary 3.3 are also extensions of representation for  $M^d$  under conditions CB = 0 and CA = 0 (see [13]).

In [12] a representation for  $M^d$  is offered under conditions AB = 0 and CB = 0. This result was extended in [14], where a formula for  $M^d$  is given under conditions ABC = 0, ABD = 0, CBD = 0 and CBC = 0. In our following result we derive the representation for  $M^d$  under conditions ABC = 0, ABD = 0 and CBD = 0, without additional condition CBC = 0.

**Theorem 3.4** Let M be matrix of a form (1.1). If ABC = 0, ABD = 0 and CBD = 0. Then

$$M^{d} = \begin{bmatrix} A^{d} + B\Theta_{0} & B\Gamma + B\Theta_{1}AB + (A^{d})^{2}B \\ -B(\Gamma^{2}CA + D\Gamma^{2}C)A^{d}B \\ \Gamma C + \Theta_{0}A & D^{d} + \Theta_{0}B \end{bmatrix},$$
(3.10)

where

$$\Theta_k = \left( K_1 (A^d)^{2k} + \Gamma^k K_2 \right) A + D \left( K_1 (A^d)^{2k} + \Gamma^k K_2 \right), \text{ for } k = 0, 1, (3.11)$$

$$K_1 = \sum_{i=0}^{\mu_1 - 1} D^{\pi} (D^2 + CB)^i C(A^d)^{2i+4} - \sum_{i=0}^{\mu_1} \Gamma(CB)^i C(A^d)^{2i+2}, \qquad (3.12)$$

$$K_2 = \sum_{i=0}^{\nu_1 - 1} \Gamma^{i+2} C A^{2i} A^{\pi}, \qquad (3.13)$$

 $\nu_1 = \operatorname{ind}(A^2), \ \mu_1 = \operatorname{ind}(D^2 + CB) \ and \ \Gamma \ is \ defined \ by \ (2.10).$ 

**Proof.** We can split matrix M as M = P + Q, where

$$P = \left[ \begin{array}{cc} A & 0 \\ 0 & 0 \end{array} \right], \ Q = \left[ \begin{array}{cc} 0 & B \\ C & D \end{array} \right].$$

According to assumptions of the theorem, we have that PQP = 0 and  $PQ^2 = 0$ . Hence we can apply Lemma 2.1 and we have

$$(P+Q)^{d} = Y_{1} + Y_{2} + \left(Y_{1}(P^{d})^{2} + (Q^{d})^{2}Y_{2} - Q^{d}(P^{d})^{2} - (Q^{d})^{2}P^{d}\right)PQ,$$
(3.14)

where  $Y_1$  and  $Y_2$  are defined by (2.1). Since CBD = 0, matrix Q satisfies condition of Lemma 2.7. After applying Lemma 2.7 and facts from Remark 4 we get

$$Y_1 = \begin{bmatrix} A^d + B(K_1A + DK_1) & 0\\ \Gamma C - \Gamma C A^{\pi} + (K_1A + DK_1)A & 0 \end{bmatrix},$$
 (3.15)

$$Y_2 = \begin{bmatrix} B(K_2A + DK_2) & B\Gamma\\ \Gamma C A^{\pi} + (K_2A + DK_2)A & D\Gamma \end{bmatrix},$$
(3.16)

where  $K_1$  and  $K_2$  are given in (3.12) and (3.13), respectively. Now, by substituting (3.16) and (3.15) into (3.14) we get that (3.10) holds.  $\Box$ 

Notice that Theorem 3.4 is also an extension of a case when ABC = 0 and BD = 0 (see [19]).

The following result is direct corollary of Theorem 3.4.

**Corollary 3.4** Let M be given by (1.1). If CBD = 0 and AB = 0 then

$$M^{d} = \left[ \begin{array}{cc} A^{d} + B\Theta_{0} & B\Gamma \\ \Gamma C + \Theta_{0}A & D\Gamma \end{array} \right],$$

where  $\Gamma$  and  $\Theta_0$  are defined by (2.10) and (3.11) respectively.

As another extension of a result from [12], where formula for  $M^d$  is given under conditions AB = 0 and CB = 0, we offer the following theorem and its corollary.

**Theorem 3.5** Let M be matrix of a form (1.1). If ABC = 0, ABD = 0 and DCB = 0 then

$$M^{d} = \begin{bmatrix} A^{d} + B(N_{1} + N_{2}) & B\Psi + B(N_{1}(A^{d})^{2} + \Psi N_{2})AB \\ + (A^{d})^{2}B - B\Psi^{2}(CA + DC)A^{d}B \\ \Psi C + (N_{1} + N_{2})A & \Psi D + (N_{1} + N_{2})B \end{bmatrix},$$
(3.17)

where

$$N_{1} = \sum_{i=0}^{\mu_{1}-1} (CB)^{\pi} (D^{2}+CB)^{i} (CA+DC) (A^{d})^{2i+4} - \sum_{i=0}^{\mu_{1}} \Psi D^{2i} (CA+DC) (A^{d})^{2i+2}$$
(3.18)

$$N_2 = \sum_{i=0}^{\nu_1 - 1} \Psi^{i+2} (CA + DC) A^{2i} A^{\pi}, \qquad (3.19)$$

 $\nu_1 = \operatorname{ind}(A^2), \ \mu_1 = \operatorname{ind}(D^2 + CB) \ and \ \Psi \ is \ defined \ by \ (2.6).$ 

**Proof.** Using the splitting

$$M = \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & B \\ C & D \end{bmatrix} := P + Q,$$

we get that matrices P and Q satisfy the conditions of Lemma 2.1. Furthermore, matrix Q satisfies the conditions of Lemma 2.6. After applying these lemmas, using Remark 3 and computing, we get that (3.17) holds.  $\Box$ 

Next corollary follows immediately from Theorem 3.5.

**Corollary 3.5** Let M be given by (1.1). If DCB = 0 and AB = 0 then

$$M^{d} = \left[ \begin{array}{cc} A^{d} + B(N_{1} + N_{2}) & B\Psi \\ \Psi C + (N_{1} + N_{2})A & \Psi D \end{array} \right],$$

where  $\Psi$ ,  $N_1$  and  $N_2$  are defined by (2.6), (3.18) and (3.19), respectively.

Cvetković and Milovanović (see [17]) offered a representation for  $M^d$ under conditions ABC = 0, DC = 0, with third condition BD = 0 (or BC is nilpotent, or D is nilpotent). Cvetković - Ilić (see [18]) extended this result and gave a formula for  $M^d$  under conditions ABC = 0 and DC = 0, without any additional condition. In our next result we replace second condition DC = 0 from [18] with two weaker conditions. Therefore, we can get results from [17, 18] as direct corollaries.

**Theorem 3.6** Let M be matrix of a form (1.1), such that ABC = 0, DCA = 0 and DCB = 0. Then

$$M^{d} = \begin{bmatrix} \Phi A + (U_{1} + U_{2})C & \Phi B + (U_{1} + U_{2})D \\ C\Phi + C(U_{1}(D^{d})^{2} + \Phi U_{2})DC & \\ + (D^{d})^{2}C - C\Phi^{2}(AB + BD)D^{d}C & D^{d} + C(U_{1} + U_{2}) \end{bmatrix},$$

where

$$U_{1} = \sum_{i=0}^{\mu_{2}-1} (BC)^{\pi} (A^{2} + BC)^{i} (AB + BD) (D^{d})^{2i+4} - \sum_{i=0}^{\mu_{2}} \Phi A^{2i} (AB + BD) (D^{d})^{2i+2}$$
$$U_{2} = \sum_{i=0}^{\nu_{2}-1} \Phi^{i+2} (AB + BD) D^{2i} D^{\pi},$$

 $\nu_2 = \operatorname{ind}(D^2), \ \mu_2 = \operatorname{ind}(A^2 + BC) \ and \ \Phi \ is \ defined \ by \ (2.3).$ 

**Proof.** If we split matrix M as

$$M = \begin{bmatrix} 0 & 0 \\ 0 & D \end{bmatrix} + \begin{bmatrix} A & B \\ C & 0 \end{bmatrix} := P + Q,$$

we have PQP = 0 and  $PQ^2 = 0$ . Also, matrix P satisfies conditions of Lemma 2.4. After applying Lemma 2.1, Lemma 2.4, Remark 1 and computing we get that the statement of the theorem is valid.  $\Box$ 

# References

- A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, 2nd Edition, Springer Verlag, New York, 2003.
- [2] S. L. Campbell, Singular Systems of Differential Equations, Pitman, London, 1980.
- [3] S. L. Campbell, The Drazin inverse and systems of second order linear differential equations, Linear and Multilinear Algebra, 14 (1983) 195– 198.

- [4] S. L. Campbell, C. D. Meyer, Generalized Inverse of Linear Transformations, Pitman, London, 1979; Dover, New York, 1991.
- [5] X. Chen, R.E. Hartwig, The group inverse of a triangular matrix, Linear Algebra Appl., 237/238 (1996) 97–108.
- [6] D. S. Djordjević, P. S. Stanimirović, On the generalized Drazin inverse and generalized resolvent, Czechoslovak Math. J., 51(126)(2001) 617– 634.
- [7] R. E. Hartwig, X. Li, Y. Wei, Representations for the Drazin inverse of 2 × 2 block matrix, SIAM J. Matrix Anal. Appl., 27 (2006) 757–771.
- [8] R. E. Hartwig, G. Wang, Y. Wei, Some additive results on Drazin inverse, Linear Algebra Appl. 322 (2001) 207–217
- [9] Y. Wei, X. Li, F. Bu, F. Zhang, Relative perturbation bounds for the eigenvalues of diagonalizable and singular matrices-application of perturbation theory for simple invariant subspaces, Linear Algebra Appl., 419 (2006) 765-771.
- [10] R. E. Hartwig, J. M. Shoaf, Group inverses and Drazin inverses of bidiagonal and triangular Toeplitz matrices, Austral. J. Math., 24(A) (1977) 10–34.
- [11] C. D. Meyer, N. J. Rose, The index and the Drazin inverse of block triangular matrices, SIAM J. Appl. Math., 33 (1977) 1–7.
- [12] D. S. Cvetković–Ilić, A note on the representation for the Drazin inverse of 2 × 2 block matrices, Linear Algebra Appl., 429 (2008) 242–248
- [13] D. S. Cvetković–Ilić, J. Chen, Z. Xu, Explicit representation of the Drazin inverse of block matrix and modified matrix, Linear and Multilinear Algebra, 57.4 (2009) 355–364.
- [14] H. Yang, X. Liu, The Drazin inverse of the sum of two matrices and its applications, J. Comput. Appl. Math., 235 (2011) 1412-1417.
- [15] J. Ljubisavljević, D. S. Cvetković–Ilić, Additive results for the Drazin inverse of block matrices and applications, J. Comput. Appl. Math. 235 (2011) 3683–3690.
- [16] N. Castro–González, E. Dopazo, M. F. Martínez–Serrano, On the Drazin Inverse of sum of two operators and its application to operator matrices, J. Math. Anal. Appl. 350 (2009) 207–215.

- [17] A. S. Cvetković, G. V. Milovanović, On Drazin inverse of operator matrices, J. Math. Anal. Appl., 375 (2011) 331-335.
- [18] D. S. Cvetković–Ilić, New additive results on Drazin inverse and its applications, Appl. Math. Comput., 218(7) (2011) 3019–3024.
- [19] C. Bu, K. Zhang, The Explicit Representations of the Drazin Inverses of a Class of Block Matrices, Electron. J. Linear Algebra, 20 (2010) 406–418.
- [20] M. Catral, D. D. Olesky, P. Van Den Driessche, Block representations of the Drazin inverse of a bipartite matrix, Electron. J. Linear Algebra, 18 (2009) 98-107.
- [21] C. Deng, Y. Wei, A note on the Drazin inverse of an anti-triangular matrix, Linear Algebra Appl., 431 (2009) 1910-1922.