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Abstract

In this paper we offer new representations for Drazin inverse of
block matrix, which recover some representations from current litera-
ture on this subject.
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1 Introduction

Let A be a square complex matrix. By rank(A) we denote the rank of a
matrix A. The index of a matrix A, denoted by ind(A), is the smallest
nonnegative integer k such that rank(Ak+1) = rank(Ak). For every matrix
A ∈ Cn×n, such that ind(A) = k, there exists the unique matrix Ad ∈ Cn×n,
which satisfies following relations:

Ak+1Ad = Ak, AdAAd = Ad, AAd = AdA.

Matrix Ad is called the Drazin inverse of matrix A (see [1]). In the case
ind(A) = 1, the Drazin inverse of A is called the group inverse of A, denoted
by A# or Ag. The case ind(A) = 0 is valid if and only if A is nonsingular,
so in that case Ad reduces to A−1. Throughout this paper we suppose that
A0 = I, where I is identity matrix, and

∑k−j
i=1 ∗ = 0, for k ≤ j.

The theory of Drazin inverse of a square matrix has numerous appli-
cations, such as in singular differential equations and singular difference
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equations, Markov chains and iterative methods (see [2, 4, 5, 6, 8, 9]). An
application of the Drazin inverse of a 2 × 2 block matrix can be found in
[2, 3, 7].
In 1979 Campbell and Meyer[4] posed the problem of finding an explicit
representation for the Drazin inverse of 2× 2 complex matrix

M =
[

A B
C D

]
, (1.1)

in terms of its blocks, where A and D are square matrices, not necessarily
of the same size. Until now, there has been no formula for Md without
any side conditions for blocks of matrix M . However, many papers studied
special cases of this open problem and offered a formula for Md under some
specific conditions for blocks of M . Here we list some of them:

(i) B = 0 (or C = 0) (see [10, 11]);

(ii) BC = 0, BD = 0 and DC = 0 (see [6]);

(iii) BC = 0, DC = 0 (or BD = 0) and D is nilpotent (see [7]);

(iv) BC = 0 and DC = 0 (see [12]);

(v) CB = 0 and AB = 0 (or CA = 0) (see [12, 13]);

(vi) BCA = 0, BCB = 0, DCA = 0 and DCB = 0 (see [14]);

(vii) ABC = 0, CBC = 0, ABD = 0 and CBD = 0 (see [14]);

(viii) BCA = 0, BCB = 0, ABD = 0 and CBD = 0 (see [15]);

(ix) BCA = 0, DCA = 0, CBC = 0, and CBD = 0 (see [15]);

(x) BCA = 0, BD = 0 and DC = 0 (or BC is nilpotent) (see [16]);

(xi) BCA = 0, DC = 0 and D is nilpotent (see [16]);

(xii) ABC = 0, DC = 0 and BD = 0 (or BC is nilpotent, or D is nilpotent)
(see [17]);

(xiii) BCA = 0 and BD = 0 (see [18]);

(xiv) ABC = 0 and DC = 0 (or BD = 0) (see [18, 19]).

In this paper we derive representations for Md which recover represen-
tations from previous list.
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2 Key lemmas

In order to prove our main results, we first state some lemmas.

Lemma 2.1 [14] Let P,Q ∈ Cn×n be such that ind(P ) = r and ind(Q) = s.
If PQP = 0 and PQ2 = 0 then

(P + Q)d = Y1 + Y2 +
(
Y1(P d)2 + (Qd)2Y2 −Qd(P d)2 − (Qd)2P d

)
PQ,

where

Y1 =
s−1∑

i=0

QπQi(P d)i+1, Y2 =
r−1∑

i=0

(Qd)i+1P iP π. (2.1)

Lemma 2.2 [14] Let P,Q ∈ Cn×n be such that ind(P ) = r and ind(Q) = s.
If QPQ = 0 and P 2Q = 0 then

(P + Q)d = Y1 + Y2 + PQ
(
Y1(P d)2 + (Qd)2Y2 −Qd(P d)2 − (Qd)2P d

)
,

where Y1 and Y2 are defined by (2.1).

Lemma 2.3 [20] Let M ∈ Cn×n be such that M =
[

0 B
C 0

]
, B ∈ Cp×(n−p),

C ∈ C(n−p)×p. Then

Md =
[

0 B(CB)d

(CB)dC 0

]
.

Deng and Wei [21] gave representations for the Drazin inverse of upper
anti-triangular block matrix under some specific conditions. Here we state
these results and some additional facts, which we will be useful to prove our
results. Consider the block matrix of a form (1.1), where D = 0:

M =
[

A B
C 0

]
. (2.2)

Lemma 2.4 [21] Let M ∈ Cn×n be matrix of a form (2.2). If ABC = 0,
then

Md =
[

ΦA ΦB
CΦ CΦ2AB

]
,

where

Φ = (A2 +BC)d =
t1−1∑

i=0

(BC)π(BC)i(Ad)2i+2 +
ν1−1∑

i=0

((BC)d)i+1A2iAπ (2.3)

and t1 = ind(BC), ν1 = ind(A2).
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Remark 1 Let M be matrix of a form (2.2). If conditions of Lemma 2.4
are satisfied, we have that:

M2k+1 =
[

(A2 + BC)kA (A2 + BC)kB
C(A2 + BC)k C(A2 + BC)k−1AB

]
, for k ≥ 1

and

M2k =
[

(A2 + BC)k (A2 + BC)k−1AB
C(A2 + BC)k−1A C(A2 + BC)k−1B

]
, for k ≥ 1.

Notice that (A2 + BC)k =
k∑

j=0

(BC)k−jA2j, for k ≥ 0. Also, (A2 + BC)π =

Aπ −BCΦ = (BC)π − ΦA2. We can check that

Φk =
t1−1∑

i=0

(BC)π(BC)i(Ad)2i+2k+
ν1−1∑

i=0

((BC)d)i+kA2iAπ−
k−1∑

i=1

((BC)d)k−i(Ad)2i,

for k ≥ 1. Therefore we have

(Md)2k+1 =
[

Φk+1A Φk+1B
CΦk+1 CΦk+2AB

]
, for k ≥ 0

and

(Md)2k =
[

Φk Φk+1AB
CΦk+1A C(Φk+1B

]
, for k ≥ 1.

Lemma 2.5 [21] Let M ∈ Cn×n be as in (2.2). If BCA = 0, then

Md =
[

AΩ ΩB
CΩ CAΩ2B

]
,

where

Ω = (A2 +BC)d =
t1−1∑

i=0

(Ad)2i+2(BC)i(BC)π +
ν1−1∑

i=0

AπA2i((BC)d)i+1 (2.4)

and t1 = ind(BC), ν1 = ind(A2).
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Remark 2 Let M be matrix of a form (2.2). If conditions of Lemma 2.5
hold, we have that:

M2k+1 =
[

A(A2 + BC)k (A2 + BC)kB
C(A2 + BC)k CA(A2 + BC)k−1B

]
, for k ≥ 1

and

M2k =
[

(A2 + BC)k A(A2 + BC)k−1B
CA(A2 + BC)k−1 C(A2 + BC)k−1B

]
, for k ≥ 1.

Clearly, (A2 + BC)k =
k∑

j=0

A2j(BC)k−j, for k ≥ 0. Also (A2 + BC)π =

Aπ − ΩBC = (BC)π −A2Ω. Furthermore, we have that

Ωk =
t1−1∑

i=0

(Ad)2i+2k(BC)i(BC)π+
ν1−1∑

i=0

AπA2i((BC)d)i+k−
k−1∑

i=1

(Ad)2i((BC)d)k−i,

for k ≥ 1. Hence we get that

(Md)2k+1 =
[

AΩk+1 Ωk+1B
CΩk+1 CAΩk+2B

]
, for k ≥ 0

and

(Md)2k =
[

Ωk AΩk+1B
CAΩk+1 CΩk+1B

]
, for k ≥ 1.

In following two lemmas we present two new representations for Drazin
inverse of lower anti-triangular block matrix. Consider the block matrix of
a form (1.1) such that A = 0:

M =
[

0 B
C D

]
. (2.5)

Lemma 2.6 Let M ∈ Cn×n be matrix of a form (2.5). If DCB = 0, then

Md =
[

BΨ2DC BΨ
ΨC ΨD

]
,

where

Ψ = (D2+CB)d =
t2−1∑

i=0

(CB)π(CB)i(Dd)2i+2+
ν2−1∑

i=0

((CB)d)i+1D2iDπ (2.6)

and t2 = ind(CB), ν2 = ind(D2).
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Proof. First, notice that from DCB = 0 we have that matrices D2 and
CB satisfy the conditions of Lemma 2.1. Hence we get

(D2 + CB)d =
t2−1∑

i=0

(CB)π(CB)i(Dd)2i+2 +
ν2−1∑

i=0

((CB)d)i+1D2iDπ.

Consider the splitting of matrix M

M =
[

0 B
C D

]
=

[
0 0
0 D

]
+

[
0 B
C 0

]
:= P + Q.

Since DCB = 0 we have that PQ2 = 0. Also, we have PQP = 0. Therefore
matrices P and Q satisfy the conditions of Lemma 2.1 and

(P +Q)d = Y1+Y2+
(
Y1(P d)2 + (Qd)2Y2 −Qd(P d)2 − (Qd)2P d

)
PQ, (2.7)

where Y1, Y2 are as in (2.1). Clearly,

Q2k =
[

(BC)k 0
0 (CB)k

]
, Q2k+1 =

[
0 B(CB)k

(CB)kC 0

]
, for k ≥ 0.

Furthermore, by Lemma 2.3 we have

(Qd)2k =
[

B((CB)d)k+1 0
0 ((CB)d)k

]
, for k ≥ 1,

(Qd)2k+1 =
[

0 B((CB)d)k+1

((CB)d)k+1C 0

]
, for k ≥ 0.

After computing, we get

Y1 =




0 B

t2−1∑

i=0

(CB)π(CB)i(Dd)2i+2

0
t2−1∑

i=0

(CB)π(CB)i(Dd)2i+1




, (2.8)

Y2 =




0 B

ν2−1∑

i=0

((CB)d)i+1D2iDπ

(CB)dC

ν2−1∑

i=0

((CB)d)i+1D2i+1Dπ




. (2.9)

After substituting (2.8) and (2.9) into (2.7) we get that the statement of the
lemma is valid. 2
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Remark 3 Let M be matrix of a form (2.5) such that DCB = 0. Then

M2k+1 =
[

B(D2 + CB)k−1DC B(D2 + CB)k

(D2 + CB)kC (D2 + CB)kD

]
, for k ≥ 1

and

M2k =
[

B(D2 + CB)k−1C B(D2 + CB)k−1D
(D2 + CB)k−1DC (D2 + CB)k

]
, for k ≥ 1.

It can be checked easily that (D2 + CB)k =
k∑

j=0

(CB)k−jD2j, for k ≥ 0, and

(D2 + CB)π = Dπ − CBΨ = (CB)π −ΨD2. Also, we have that

Ψk =
t2−1∑

i=0

(CB)π(CB)i(Dd)2i+2k+
ν2−1∑

i=0

((CB)d)i+kD2iDπ−
k−1∑

i=1

((CB)d)k−i(Dd)2i,

for k ≥ 1. Therefore we get

(Md)2k+1 =
[

BΨk+2DC BΨk+1

Ψk+1C Ψk+1D

]
, for k ≥ 0

and

(Md)2k =
[

BΨk+1C BΨk+1D
Ψk+1DC Ψk

]
, for k ≥ 1.

Using the similar method as in the proof of Lemma 2.6 we can get the
following result.

Lemma 2.7 Let M ∈ Cn×n be as in (2.5). If CBD = 0, then

Md =
[

BDΓ2C BΓ
ΓC DΓ

]
,

where

Γ =
t2−1∑

i=0

(Dd)2i+2(CB)i(CB)π +
ν2−1∑

i=0

DπD2i((CB)d)i+1 (2.10)

and t2 = ind(CB), ν2 = ind(D2).
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Proof. Since CBD = 0, using Lemma 2.1 we get (2.10). Now, if we split
matrix M as

M =
[

0 B
C D

]
=

[
0 B
C 0

]
+

[
0 0
0 D

]
:= P + Q,

we have that QPQ = 0 and P 2Q = 0. Hence, the conditions of Lemma 2.2
are satisfied. After applying Lemma 2.2 and Lemma 2.3 we complete the
proof.2

Remark 4 Let M be as in (2.5) and let CBD = 0. Then

M2k+1 =
[

BD(D2 + CB)k−1C B(D2 + CB)k

(D2 + CB)kC D(D2 + CB)k

]
, for k ≥ 1

and

M2k =
[

B(D2 + CB)k−1C BD(D2 + CB)k−1

(D2 + CB)k−1C (D2 + CB)k

]
, for k ≥ 1.

Clearly (D2 + CB)k =
k∑

j=0

D2j(CB)k−j, for k ≥ 0, and (D2 + CB)π =

Dπ − ΓCB = (CB)π −D2Γ. In addition, we can get that

Γk =
t2−1∑

i=0

(Dd)2i+2k(CB)i(CB)π+
ν2−1∑

i=0

DπD2i((CB)d)i+k−
k−1∑

i=1

(Dd)2i((CB)d)k−i,

for k ≥ 1. Also, we can get that

(Md)2k+1 =
[

BDΓk+2C BΓk+1

Γk+1C DΓk+1

]
, for k ≥ 0

and

(Md)2k =
[

BΓk+1C BDΓk+1

DΓk+1C Γk

]
, for k ≥ 1.

3 Representations

Consider the block matrix M of a form (1.1). Djordjević and Stanimirović
[6] gave explicit representation for Md under conditions BC = 0, BD = 0
and DC = 0. This result was extended to a case BC = 0, DC = 0 (see
[12]). As another generalization of these results, Yang and Liu [14] gave the
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representation for Md under conditions BCA = 0, BCB = 0, DCA = 0
and DCB = 0. In the next theorem we derive an explicit representation for
Md under conditions BCA = 0, DCA = 0 and DCB = 0. Therefore we
can see that the condition BCB = 0 from [14] is superfluous.

Theorem 3.1 Let M be matrix of a form (1.1) such that BCA = 0, DCA =
0 and DCB = 0. Then

Md =




Ad + Σ0C BΨ + AΣ0

ΨC + CAΣ1C + C(Ad)2

−CAd(BΨ2D + ABΨ2)C
Dd + CΣ0


 ,

where

Σk =
(
V1Ψk + (Ad)2kV2

)
D + A

(
V1Ψk + (Ad)2kV2

)
, for k = 0, 1, (3.1)

V1 =
ν1−1∑

i=0

AπA2iBΨi+2, (3.2)

V2 =
µ1−1∑

i=0

(Ad)2i+4B(D2 + CB)iDπ −
µ1∑

i=0

(Ad)2i+2B(CB)iΨ, (3.3)

ν1 = ind(A2), µ1 = ind(D2 + CB) and Ψ is defined by (2.6).

Proof. Consider the splitting of matrix M

M =
[

A B
C D

]
=

[
0 B
C D

]
+

[
A 0
0 0

]
:= P + Q.

Since BCA = 0 and DCA = 0 we get P 2Q = 0 and QPQ = 0. Hence
matrices P and Q satisfy the conditions of Lemma 2.2 and

(P + Q)d = Y1 + Y2 + PQY1(P d)2 + PQdY2−PQQd(P d)2−PQdP d, (3.4)

where Y1 and Y2 are as in (2.1). By the assumption of the theorem DCB = 0
we have that matrix P satisfy the conditions of Lemma 2.6. After applying
Lemma 2.6 and using Remark 3, we get

Y1 =
[

(V1D + AV1)C AπBΨ + A(V1D + AV1)
ΨC ΨD

]
, (3.5)

Y2 =
[

Ad + (V2D + AV2)C BΨ−AπBΨ + A(V2D + AV2)
0 0

]
, (3.6)
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where V1 and V2 are defined by (3.2) and (3.3), respectively. After substitut-
ing (3.5) and (3.6) into (3.4) and computing all elements of (3.4) we obtain
the result. 2

As a direct corollary of the previous theorem we get the following result.

Corollary 3.1 Let M be as in (1.1). If DCB = 0 and CA = 0 then

Md =
[

Ad + Σ0C BΨ + AΣ0

ΨC ΨD

]
,

where Σ0 is defined by (3.1) and Ψ is given in (2.6).

Notice that Corollary 3.1, therefore and Theorem 3.1 is also a generaliza-
tion of representation for Md under conditions CB = 0 and CA = 0 which
is given in [13].

The next result is a corollary of Theorem 3.1. Also, we can get the

following result using the splitting M =
[

0 0
0 D

]
+

[
A B
C 0

]
:= P + Q

and applying Lemma 2.1 and Lemma 2.5.

Corollary 3.2 Let M be matrix of a form (1.1). If BCA = 0 and DC = 0
then

Md =
[

AΩ ΩB + RD
CΩ Dd + CR

]
,

where

R = (R1 + R2)D + A(R1 + R2),

R1 =
µ2−1∑

i=0

Aπ(A2 + BC)iB(Dd)2i+4 −
µ2∑

i=0

Ω(BC)iB(Dd)2i+2,

R2 =
ν2−1∑

i=0

Ωi+2BD2iDπ,

ν2 = ind(D2), µ2 = ind(A2 + BC) and Ω is defined by (2.4).

We remark that Corollary 3.2, hence and Theorem 3.1 is also extension
of results from [16], where beside conditions BCA = 0 and DC = 0 addi-
tional condition BD = 0 (or D is nilpotent) is required.

Castro–González et al. (see [16]) gave explicit representation for Md

under conditions BCA = 0, BD = 0 and BC is nilpotent (or DC = 0).
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This result was extended to a case when BCA = 0 and BD = 0 (see [18]).
The following theorem is extension of these results.

Theorem 3.2 Let M be matrix of a form (1.1) such that BCA = 0, ABD =
0 and CBD = 0. Then

Md =


 AΩ + B(F1 + F2)

ΩB + BD(F1Ω + (Dd)2F2)B
+B(Dd)2 −BDd(CA + DC)Ω2B

CΩ + D(F1 + F2) Dd + (F1 + F2)B


 , (3.7)

where

F1 =
ν2−1∑

i=0

DπD2i(CA + DC)Ωi+2,

F2 =
µ2−1∑

i=0

(Dd)2i+4(CA + DC)(A2 + BC)i(BC)π −
µ2∑

i=0

(Dd)2i+2(CA + DC)A2iΩ,

ν2 = ind(D2), µ2 = ind(A2 + BC) and Ω is defined by (2.4).

Proof. If we split matrix M as

M =
[

A B
C 0

]
+

[
0 0
0 D

]
:= P + Q.

we have that QPQ = 0 and P 2Q = 0. Hence, matrices P and Q satisfy the
conditions of Lemma 2.2. Since BCA = 0, matrix P satisfies conditions of
Lemma 2.5. Using the similar method as in the proof of Theorem 3.1, after
applying Lemma 2.2, Lemma 2.5 and using Remark 2, we get that (3.7)
holds. 2

Notice that Theorem 3.2 is also generalization of representation from
[15] where additional condition BCB = 0 is required.

In [15] a formula for Md is given under conditions BCA = 0, DCA = 0,
CBD = 0 and CBC = 0. In the next theorem we offer a representation
for Md under conditions BCA = 0, DCA = 0 and CBD = 0, without
additional condition CBC = 0.

Theorem 3.3 Let M be as in (1.1). If BCA = 0, DCA = 0 and CBD = 0
then

Md =




Ad + (G1 + G2)C BΓ + A(G1 + G2)

ΓC + CA(G1Γ + (Ad)2G2)C
+C(Ad)2 − CAd(AB + BD)Γ2C

DΓ + C(G1 + G2)


 ,
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where

G1 =
ν1−1∑

i=0

AπA2i(AB + BD)Γi+2, (3.8)

G2 =
µ1−1∑

i=0

(Ad)2i+4(AB+BD)(D2+CB)i(CB)π−
µ1∑

i=0

(Ad)2i+2(AB+BD)D2iΓ,

(3.9)
ν1 = ind(A2), µ1 = ind(D2 + CB) and Γ is given in (2.10).

Proof. Using the splitting of matrix M

M =
[

0 B
C D

]
+

[
A 0
0 0

]
:= P + Q,

we get that conditions of Lemma 2.2 are satisfied. Also, we have that matrix
P satisfies the conditions of Lemma 2.7. Using these lemmas and Remark
4, similarly as in the proof of Theorem 3.1, we get that the statement of the
theorem is valid. 2

Corollary 3.3 Let M be matrix of a form (1.1). If CBD = 0 and CA = 0,
then

Md =
[

Ad + (G1 + G2)C BΓ + A(G1 + G2)
ΓC DΓ

]
,

where Γ, G1 and G2 are defined by (2.10), (3.8) and (3.9) respectively.

We can see that Theorem 3.3 and Corollary 3.3 are also extensions of
representation for Md under conditions CB = 0 and CA = 0 (see [13]).

In [12] a representation for Md is offered under conditions AB = 0 and
CB = 0. This result was extended in [14], where a formula for Md is given
under conditions ABC = 0, ABD = 0, CBD = 0 and CBC = 0. In
our following result we derive the representation for Md under conditions
ABC = 0, ABD = 0 and CBD = 0, without additional condition CBC = 0.

Theorem 3.4 Let M be matrix of a form (1.1). If ABC = 0, ABD = 0
and CBD = 0. Then

Md =




Ad + BΘ0
BΓ + BΘ1AB + (Ad)2B
−B(Γ2CA + DΓ2C)AdB

ΓC + Θ0A Dd + Θ0B


 , (3.10)
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where

Θk =
(
K1(Ad)2k + ΓkK2

)
A+D

(
K1(Ad)2k + ΓkK2

)
, for k = 0, 1, (3.11)

K1 =
µ1−1∑

i=0

Dπ(D2 + CB)iC(Ad)2i+4 −
µ1∑

i=0

Γ(CB)iC(Ad)2i+2, (3.12)

K2 =
ν1−1∑

i=0

Γi+2CA2iAπ, (3.13)

ν1 = ind(A2), µ1 = ind(D2 + CB) and Γ is defined by (2.10).

Proof. We can split matrix M as M = P + Q, where

P =
[

A 0
0 0

]
, Q =

[
0 B
C D

]
.

According to assumptions of the theorem, we have that PQP = 0 and
PQ2 = 0. Hence we can apply Lemma 2.1 and we have

(P + Q)d = Y1 + Y2 +
(
Y1(P d)2 + (Qd)2Y2 −Qd(P d)2 − (Qd)2P d

)
PQ,

(3.14)
where Y1 and Y2 are defined by (2.1). Since CBD = 0, matrix Q satisfies
condition of Lemma 2.7. After applying Lemma 2.7 and facts from Remark
4 we get

Y1 =
[

Ad + B(K1A + DK1) 0
ΓC − ΓCAπ + (K1A + DK1)A 0

]
, (3.15)

Y2 =
[

B(K2A + DK2) BΓ
ΓCAπ + (K2A + DK2)A DΓ

]
, (3.16)

where K1 and K2 are given in (3.12) and (3.13), respectively. Now, by sub-
stituting (3.16) and (3.15) into (3.14) we get that (3.10) holds. 2

Notice that Theorem 3.4 is also an extension of a case when ABC = 0
and BD = 0 (see [19]).

The following result is direct corollary of Theorem 3.4.

Corollary 3.4 Let M be given by (1.1). If CBD = 0 and AB = 0 then

Md =
[

Ad + BΘ0 BΓ
ΓC + Θ0A DΓ

]
,

where Γ and Θ0 are defined by (2.10) and (3.11) respectively.
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As another extension of a result from [12], where formula for Md is given
under conditions AB = 0 and CB = 0, we offer the following theorem and
its corollary.

Theorem 3.5 Let M be matrix of a form (1.1). If ABC = 0, ABD = 0
and DCB = 0 then

Md =




Ad + B(N1 + N2)
BΨ + B(N1(Ad)2 + ΨN2)AB

+(Ad)2B −BΨ2(CA + DC)AdB

ΨC + (N1 + N2)A ΨD + (N1 + N2)B


 ,

(3.17)
where

N1 =
µ1−1∑

i=0

(CB)π(D2+CB)i(CA+DC)(Ad)2i+4−
µ1∑

i=0

ΨD2i(CA+DC)(Ad)2i+2,

(3.18)

N2 =
ν1−1∑

i=0

Ψi+2(CA + DC)A2iAπ, (3.19)

ν1 = ind(A2), µ1 = ind(D2 + CB) and Ψ is defined by (2.6).

Proof. Using the splitting

M =
[

A 0
0 0

]
+

[
0 B
C D

]
:= P + Q,

we get that matrices P and Q satisfy the conditions of Lemma 2.1. Further-
more, matrix Q satisfies the conditions of Lemma 2.6. After applying these
lemmas, using Remark 3 and computing, we get that (3.17) holds. 2

Next corollary follows immediately from Theorem 3.5.

Corollary 3.5 Let M be given by (1.1). If DCB = 0 and AB = 0 then

Md =
[

Ad + B(N1 + N2) BΨ
ΨC + (N1 + N2)A ΨD

]
,

where Ψ, N1 and N2 are defined by (2.6), (3.18) and (3.19), respectively.

Cvetković and Milovanović (see [17]) offered a representation for Md

under conditions ABC = 0, DC = 0 , with third condition BD = 0 (or
BC is nilpotent, or D is nilpotent). Cvetković - Ilić (see [18]) extended this
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result and gave a formula for Md under conditions ABC = 0 and DC = 0,
without any additional condition. In our next result we replace second
condition DC = 0 from [18] with two weaker conditions. Therefore, we can
get results from [17, 18] as direct corollaries.

Theorem 3.6 Let M be matrix of a form (1.1), such that ABC = 0,
DCA = 0 and DCB = 0. Then

Md =




ΦA + (U1 + U2)C ΦB + (U1 + U2)D

CΦ + C(U1(Dd)2 + ΦU2)DC

+(Dd)2C − CΦ2(AB + BD)DdC
Dd + C(U1 + U2)


 ,

where

U1 =
µ2−1∑

i=0

(BC)π(A2 + BC)i(AB + BD)(Dd)2i+4 −
µ2∑

i=0

ΦA2i(AB + BD)(Dd)2i+2

U2 =
ν2−1∑

i=0

Φi+2(AB + BD)D2iDπ,

ν2 = ind(D2), µ2 = ind(A2 + BC) and Φ is defined by (2.3).

Proof. If we split matrix M as

M =
[

0 0
0 D

]
+

[
A B
C 0

]
:= P + Q,

we have PQP = 0 and PQ2 = 0. Also, matrix P satisfies conditions of
Lemma 2.4. After applying Lemma 2.1, Lemma 2.4, Remark 1 and comput-
ing we get that the statement of the theorem is valid. 2
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