
A note on the Drazin inverse of a modified

matrix

Abstract

In this paper the expression for the Drazin inverse of a modified ma-
trix is considered and some interesting results are established. This con-
tributes to certain recent results obtained by Y.Wei[9].
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1 Introduction

Let Cn×m denote the set of all complex n×m matrices. For A ∈ Cn×m, the
set of inner inverses are given by:

A{1} = {X : AXA = A}. (1)

Let us recall that the Drazin inverse of A ∈ Cn×n [3] is the matrix AD ∈
Cn×n which satisfies

Ak+1X = Ak, XAX = X, AX = XA,

for some nonnegative integer k. The least such k is the index of A, denoted by
ind(A). Some interesting properties of Drazin inverse, among other papers,
are investigated in [8], [10], [4].
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In this paper we consider a matrix A ∈ C(m+p)×(n+q) partitioned as

M =

[
A B
C D

]
, (2)

where A ∈ Cm×n and D ∈ Cp×q.

The motivation for this research is the paper of Y.Wei [9] in which he
derives various expressions for the Drazin inverse of a modified matrix.

It is well-known that the generalized Schur complement of D in M is
defined as:

S(M) = A−BD−C, (3)

where D− ∈ D{1}.
If we replace D− ∈ D{1} by the Drazin inverse of D in (3), we obtain the

Drazin-Schur complement of D in M , which we denote by

SD(M) = A−BDDC.

The Drazin-Schur complement of A in M , is denoted by

ZD(M) = D − CADB.

For interesting results concerning Schur complements see [1], [2], [6], [7].

In this paper we derive some expressions for the Drazin inverse of Drazin-
Schur complement for the matrix M given by (2). As a corollary, we obtain
the results of Wei [9].

2 Results

For an arbitrary matrix A we denote by EA = I −AAD. Let

K = ADB, H = CAD, G = HK.

We use S and Z instead of SD(M) and ZD(M), respectively.

When the partitioned matrix M and the submatrix D are both nonsin-
gular, then the Schur complement of D in M is also nonsingular. When M, A
and D are all three nonsingular , then

(A−BD−1C)−1 = A−1 + A−1B(D − CADB)−1CA−1
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which was observed by Duncan [5]. We have the analogous result concerning
the Drazin inverse and the Drazin-Schur complement.

Theorem 2.1 Suppose that EAB = 0, CEA = 0, BEDZDC = 0, BDDEZC =
0, BZDEDC = 0, BEZDDC = 0. Then

SD = AD + ADBZDCAD.

Proof. Let X = AD + ADBZDCAD. Then

SX = (A−BDDC)(AD + ADBZDCAD)
= AAD + AADBZDCAD −BDDCAD −BDDCADBZDCAD

= AAD + BZDCAD −BDDCAD −BDD(D − Z)ZDCAD

= AAD + BEDZDCAD −BDDEZCAD

= AAD.

Similarly, XS = ADA i.e. XS = SX. Further

XSX = ADA(AD + ADBZDCAD)
= AD + ADBZDCAD

= X.

By induction, it follows that

(A−BDDC)m+1X = (A−BDDC)m + (Am+1AD −Am).

Hence, (A−BDDC)m+1X = (A−BDDC)m holds for m ≥ index(A). 2

In the case when D = I, it follows that ED = 0. Hence, we obtain
Theorem 2.1 from [9] as a corollary of our Theorem 2.1.

Corollary 2.1 If EAB = 0, CEA = 0, BEZC = 0, then

(A−BC)D = AD + ADBZDCAD,

where Z = I − CADB.

If Z is invertible, then from Theorem 2.1 we get the following result:
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Corollary 2.2 Suppose that Z is nonsingular and EAB = 0, CEA = 0,
BEDZ−1C = 0, BZ−1EDC = 0. Then

SD = AD + ADBZ−1CAD.

In the case when B = I we have the following corollary:

Corollary 2.3 Suppose that CEA = 0, EADD = 0 and ‖AD‖ · ‖DDC‖ ≤ 1.
Then

(A−DDC)D = (I −ADDDC)−1AD = AD(I −DDCAD)−1

and

(A−DDC)D −AD = (A−DDC)DDDCAD = ADDDC(A−DDC)D,

with
‖(A−DDC)D −AD‖

‖AD‖ ≤ kD(A)‖DDC‖/‖A‖
1− kD(A)‖DDC‖/‖A‖ ,

where kD(A) = ‖A‖‖AD‖ is the condition number with respect to the Drazin
inverse.

Proof. For the proof of this corollary see Theorem 3.2 and Corollary 3.2 from
[10].

Theorem 2.2 Let Z = 0, EAB = 0, CEA = 0, BEDGDC = 0, BDDEGC =
0, BGDEDC = 0 and BEGDDC = 0. Then

SD = (I −KGDH)AD(I −KGDH)
= (I −KH(KH)D)AD(I −KH(KH)D).

Proof. Denote by X = (I −KGDH)AD(I −KGDH). We obtain that

SX = (A−BDDC)(I −KGDH)AD(I −KGDH)
= (A−BDDC −BGDCAD + BDDDGDCAD)

×(AD − (AD)2BGDCAD)
= (A−BDDC)(AD − (AD)2BGDCAD)

4



= AAD −BDDCAD −A(AD)2BGDCAD

+BDDC(AD)2BGDCAD

= AAD −BDDCAD −ADBGDCAD + BDDGGDCAD

= AAD −ADBGDCAD

= AAD −KGDH

and XS = AAD −KGDH, i.e. XS = SX. Also,

XSX = (AAD −KGDH)(I −KGDH)AD(I −KGDH)
= (AAD −KGDH −AADKGDH + KGDHKGDH)

×(AD −ADKGDH)
= (AAD −KGDH)(AD −ADKGDH)
= (I −KGDH)AADAD(I −KGDH)
= X.

We prove that (A−BDDC)m+1X = (A−BDDC)m by induction. 2

If D = I, then we obtain the Theorem 2.2 of [9]:

Corollary 2.4 Suppose that Z = 0, EAB = 0, CEA = 0 and BEGC = 0.
Then

(A−BC)D = (I −KGDH)AD(I −KGDH)
= (I −KH(KH)D)AD(I −KH(KH)D).

Theorem 2.3 Let ind(Z) = 1 and EAB = 0, CEA = 0, BED = 0, EDC =
0, ZZ#G = GZZ#, BD = DB, CD = DC, BEGC = 0. Then

SD = (I −KEZGDH)AD(I −KEZGDH) + KZ#H. (4)

Proof. Denote by X the right side of (4). We have that

SX = (A−BDDC −BEZGDH + BDDCADBEZGDH)
×AD(I −KEZGDH) + AKZ#H −BDDCADBZ#H

= (A−BDDC −BEZGDH + BDD(D − Z)EZGDH)
×AD(I −KEZGDH) + BZ#H −BDD(D − Z)Z#H
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= (A−BDDC)AD(I −KEZGDH) + BDDZZ#H

= AAD −KEZGDH −BDDCAD + BDDGGDEZH

+BDDZZ#H

= AAD −KEZGDH −BDDEGCAD + BDDEGZZ#CAD

= AAD −KEZGDH

and

XS = (I −KEZGDH)AD(A−BDDC −KEZGDC

+KEZGDCADBDDC) + KZ#C −KZ#CADBDDC

= (I −KEZGDH)AD(A−BDDC −KEZGDC

+KEZGD(D − Z)DDC) + KZ#C −KZ#(D − Z)DDC

= (I −KEZGDH)AD(A−BDDC) + KZ#ZDDC

= ADA−ADBDDC −KEZGDH + KEZGDGDDC

+KZ#ZDDC

= ADA−KGDEZH −ADBEGDDC + KZ#ZEGDDC

= ADA−KGDEZH.

Furthermore,

XSX = (ADA−KGDEZH)(I −KEZGDH)AD ×
(I −KEZGDH) + (ADA−KGDEZH)KZ#H

= (ADA−KGDEZH)AD(I −KEZGDH) + KZ#H

= X.

By induction, it follows that

(A−BDDC)m+1X = (A−BDDC)m + (Am+1AD −Am).

Hence, (A−BDDC)m+1X = (A−BDDC)m, for m ≥ ind(A).

Obviously, for D = I we have the following result:

Corollary 2.5 Let EAB = 0, CEA = 0, BEGC = 0, GDEZ = EZGD and
index(Z) = 1. Then

(A−BC)D = (I −KEZGDH)AD(I −KEZGDH) + KZ#H.
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