A note on the Drazin inverse of a modified
matrix

Abstract

In this paper the expression for the Drazin inverse of a modified ma-
trix is considered and some interesting results are established. This con-
tributes to certain recent results obtained by Y.Wei[9].
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1 Introduction

Let C™*™ denote the set of all complex n x m matrices. For A € C™*™, the
set of inner inverses are given by:

A{1} = {X : AXA = A}. (1)

Let us recall that the Drazin inverse of A € C™*™ [3] is the matrix AP €
C™™ which satisfies

ALY = AF XAX =X, AX = XA,

for some nonnegative integer k. The least such k is the index of A, denoted by
ind(A). Some interesting properties of Drazin inverse, among other papers,
are investigated in [8], [10], [4].
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In this paper we consider a matrix A € C("+P)*(+9) partitioned as

AB]’ @

M:[C D

where A € C™*"™ and D € CP*4,

The motivation for this research is the paper of Y.Wei [9] in which he
derives various expressions for the Drazin inverse of a modified matrix.

It is well-known that the generalized Schur complement of D in M is
defined as:

S(M)=A-BD C, (3)
where D~ € D{1}.

If we replace D~ € D{1} by the Drazin inverse of D in (3), we obtain the
Drazin-Schur complement of D in M, which we denote by

Sp(M)= A - BDPC.
The Drazin-Schur complement of A in M, is denoted by
Zp(M) =D — CAPB.
For interesting results concerning Schur complements see [1], [2], [6], [7].

In this paper we derive some expressions for the Drazin inverse of Drazin-
Schur complement for the matrix M given by (2). As a corollary, we obtain
the results of Wei [9].

2 Results

For an arbitrary matrix A we denote by F4 = I — AAP. Let
K =APB, H=CAP, G=HK.
We use S and Z instead of Sp(M) and Zp(M), respectively.

When the partitioned matrix M and the submatrix D are both nonsin-
gular, then the Schur complement of D in M is also nonsingular. When M, A
and D are all three nonsingular , then

(A-BD'C)'=A"14+A'B(D-CcAPB)'cA™?



which was observed by Duncan [5]. We have the analogous result concerning
the Drazin inverse and the Drazin-Schur complement.

Theorem 2.1 Suppose that E4B =0, CE4 =0, BEpZ”C =0, BDPE;C =
0, BZPEpC =0, BE;DPC =0. Then

SP = AP + APBZPCAP.
Proof. Let X = AP + APBZPCAP. Then

SX = (A—BDPC)(AP + APBZPCAP)
= AAP + AAPBZPCcAP — BDPCc AP — BDPCcAPBZPCAP
= AAP + BZPCAP — BDPCAP — BDP(D — 2)ZPC AP
= AAP + BEpZPCAP — BDPE,CAP
= AAP.

Similarly, XS = APAie. XS = SX. Further
XSX = APAAP + APBZPCAP)
= AP+ APBZPCAP
= X.
By induction, it follows that
(A— BDPCY" X = (A— BDPC)™ + (A™F1AP — A™).
Hence, (A — BDPC)"*1 X = (A — BDPC)™ holds for m > index(A). O

In the case when D = I, it follows that Ep = 0. Hence, we obtain
Theorem 2.1 from [9] as a corollary of our Theorem 2.1.

Corollary 2.1 If E4B=0, CE4 =0, BEzC =0, then
(A—BC)P = AP + APBZPC AP,

where Z =1 — CAPB.

If Z is invertible, then from Theorem 2.1 we get the following result:



Corollary 2.2 Suppose that Z is nonsingular and EaB = 0, CE4 = 0,
BEpZ='C =0, BZ7'EpC =0. Then

SP = AP + APBZ1CAP.
In the case when B = I we have the following corollary:

Corollary 2.3 Suppose that CE4 = 0, EADP =0 and ||AP| - |DPC| < 1.
Then

(A—DPC)P = (1 - APDPC) AP = AP(1 — DPCAP)!
and
(A—DPC)P — AP = (A - DPC)PDPCAP = APDPC(A - DPC)P,
with

I(A—DPC)P — AP\ kp(A)|DPC|/|A]
14| ~ 1—kp(A)IDPC| /Al

where kp(A) = ||A||||AP]| is the condition number with respect to the Drazin
wmnuerse.

Proof. For the proof of this corollary see Theorem 3.2 and Corollary 3.2 from
[10].

Theorem 2.2 Let Z =0, E4B =0, CE4 =0, BEpGPC =0, BDPE;C =
0, BGPEpC =0 and BEGDPC = 0. Then

SP = (I-KGPH)AP(I - KGPH)
= (I-KHKH)PYAP(I - KH(KH)P).

Proof. Denote by X = (I — KGPH)AP(I — KGPH). We obtain that

SX = (A-BDPC)I—-KGPH)AP(I - KGPH)
= (A—BDPC - BGPCAP + BDPDGPCAD)
x (AP — (APY2BGPCAP)
= (A-BDPC)(AP — (AP)2BGPCAP)



= AAP —BDPCAP — A(AP)2BGPCAP
+BDPC(AP)?BGPC AP

= AAP — BDPcAP — APBGPC AP + BDPGGPC AP

= AAP — APBGPCcAP

= AAP - KGPH

and XS = AAP — KGPH,ie. XS =S5X. Also,

XSX = (AAP - KGPH)(I - KGPH)AP(I - KGPH)
= (AAP - KGPH - AAPKGPH + KGPHKGPH)
x (AP — APKGP H)
= (AAP — KGPH)(AP - APKGPH)
= (I-KGPH)AAPAP(I - KGPH)
= X.

We prove that (A — BDPC)"t1X = (A - BDPC)™ by induction. O

If D = I, then we obtain the Theorem 2.2 of [9]:

Corollary 2.4 Suppose that Z =0, E4B =0, CE4 = 0 and BEqC = 0.
Then

(A-BC)? = (I-KGPH)AP(I - KGPH)
(I - KH(KH)P)AP(I - KH(KH)P).

Theorem 2.3 Let ind(Z) =1 and EoB =0, CE4 =0, BEp =0, EpC =
0, ZZ#G =GZZ#%*, BD = DB, CD = DC, BEgC =0. Then

SP = (I-KE;GPH)AP(I1 - KE;GPH) + KZ*H. (4)

Proof. Denote by X the right side of (4). We have that

SX = (A-BDPC-BE,GPH + BDPCAPBE,GPH)
xAP(I - KEz;GPH) + AKZ#*H — BDPCAPBZ#H
= (A-BDPC - BEzG”H + BD”(D - Z2)E;GPH)
xAP(I - KE;GPH) + BZ#H — BDP(D — 2)Z"H



= (A-BDPC)AP(I - KE;GPH)+ BDPZZ%*H

= AAP — KE,GPH — BD”CAP + BDPGGPE,H
+BDPzz%H

= AAP - KE,;GPH — BDPE;CAP + BDPE,z7#C AP

= AAP —KE,GPH

and

XS = (I-KEz;GPH)AP(A - BDPC - KE;,GPC

+KE,GPCAPBDPC) + KZ#C — KZ#CAPBDPC

= (I - KEzGPH)AP(A - BDPC - KE;GPC
+KE;GP(D - 2)DPC) + KZ#C — KZ#(D — Z)DPC

= (I-KEzGPH)AP(A - BDPC)+ KZz#ZDPC

= APA - APBDPC - KE,GPH + KE,GPGDPC
+Kz%*zDPC

= APA-KGPE,H — APBE;D"C + KZ* ZE-D"C

= APA-KGPE,H.

Furthermore,

XSX = (APA-KGPEzH)(I - KEzGPH)AP x

(

(I - KE;GPH)+ (APA - KGPE,H)KZ"H

= (APA-KGPE;H)AP(I - KE,GPH)+ KZ"H
= X.

By induction, it follows that
(A— BDPC)" X = (A— BDPC)™ 4 (A™F1AP — A™).
Hence, (A — BDPC)"t' X = (A — BDPC)™, for m > ind(A).
Obviously, for D = I we have the following result:

Corollary 2.5 Let E4B =0, CE4 =0, BEGC =0, GPE; = E;GP and
index(Z) =1. Then

(A-BC)YY = (I-KE;GPH)AP(I - KE,GPH)+ KZ*"H.
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