Additive results for the Drazin inverse of block matrices and applications

Jelena Ljubisavljević*, Dragana S. Cvetković-Ilić[†]

Abstract

In this paper we consider the Drazin inverse of a sum of two matrices and we derive additive formulas under conditions weaker than those used in some recent papers on the subject. Like a corollary we get the main results from the paper of H. Yang, X. Liu (*The Drazin inverse of* the sum of two matrices and its applications, Journ.Comp.Appl.Math., 235 (2011) 1412–1417). As an application we give some new representations for the Drazin inverse of a block matrix.

2000 Mathematics Subject Classification: 15A09 Key words: Drazin inverse; block matrix; additive result;

1 Introduction

Let A be a square complex matrix. We denote by $\mathcal{R}(A)$, $\mathcal{N}(A)$ and rank (A) , the range, the null space and the rank of matrix A , respectively. In addition, by $\text{ind}(A)$ we denote the smallest nonnegative integer k such that rank $(A^{k+1}) = \text{rank}(A^k)$, called the index of A. For every matrix $A \in \mathbb{C}^{n \times n}$, such that $\text{ind}(A) = k$, there exists an unique matrix $A^d \in \mathbb{C}^{n \times n}$, which satisfies the relations:

$$
A^{k+1}A^d = A^k, A^d A A^d = A^d, AA^d = A^d A.
$$

The matrix A^d is called the Drazin inverse of A (see [9, 10]). The case $\text{ind}(A) = 0$ is valid if and only if A is nonsingular, so A^d reduces to A^{-1} .

^{*}Faculty of Medicine, University of Niš

[†]Faculty of Science and Mathematics, University of Niš

Authors are supported by Grant No. 174007 of the Ministry of Science and Technological Development, Republic of Serbia

By $A^{\pi} = I - AA^d$ we denote the projection on $\mathcal{N}(A^k)$ along $\mathcal{R}(A^k)$. If the lower limit of a sum is greater than its upper limit, we always define the sum to be 0. For example, the sum $\sum_{l=1}^{k-2} * = 0$, for $k \le 2$. We agree that $A^{0} = I$, for any matrix A.

Let $P, Q \in \mathbb{C}^{n \times n}$. The open problem of finding explicit formulas for the Drazin inverse of $P + Q$ in terms of P, Q, P^d , Q^d was posed by Drazin in 1958 [9]. Many authors have considered this problem and have provided formulas for $(P+Q)^d$ under some specific conditions for the matrices P and Q . Some of them are listed bellow:

- (i) $PQ = QP = 0$ [9];
- (ii) $PQ = 0$ [11];
- (iii) $P^2Q = 0$ and $PQ^2 = 0$ [2];
- (iv) $PQ^2 = 0$ and $PQP = 0$ [13].

In Section 2 we derive some formulas for $(P+Q)^d$ under weaker conditions than those given in [9, 11, 2, 13].

Formulas for $(P+Q)^d$ can be very useful for deriving formulas for the Drazin inverse of a 2×2 block matrix. Actually, in 1979 Campbell and Meyer[4] posed the problem of finding an explicit representation for the Drazin inverse of a complex block matrix:

$$
M = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right],\tag{1.1}
$$

in terms of its blocks, where A and D are square matrices, not necessarily of the same size. No formula for M^d has yet been offered without any restrictions upon the blocks. Special cases of this problem have been studied, so at present time we have some formulas for M^d under certain conditions on the blocks of M. In Section 3 we derive some new formulas for M^d . These results are generalizations of some of the results from [7, 8].

First, we will state some auxiliary lemmas.

Lemma 1.1 [1] Let $A \in \mathbb{C}^{m \times n}$, $B \in \mathbb{C}^{n \times m}$. Then $(AB)^d = A((BA)^2)^d B$. **Lemma 1.2** [12] Let M_1 and M_2 be matrices of a form

$$
M_1 = \left[\begin{array}{cc} A & 0 \\ C & B \end{array} \right], M_2 = \left[\begin{array}{cc} B & C \\ 0 & A \end{array} \right]
$$

where A and B are square matrices such that $\text{ind}(A) = r$, $\text{ind}(B) = s$. Then $\max\{r, s\} \leq \text{ind}(M_i) \leq r + s, i = 1, 2, and$

$$
M_1^d = \left[\begin{array}{cc} A^d & 0 \\ S & B^d \end{array} \right], \ M_2^d = \left[\begin{array}{cc} B^d & S \\ 0 & A^d \end{array} \right],
$$

where

$$
S = (Bd)2 \left(\sum_{i=0}^{r-1} (Bd)i CAi \right) A\pi + B\pi \left(\sum_{i=0}^{s-1} Bi C (Ad)i \right) (Ad)2 - Bd CAd.
$$

2 The Drazin inverse of a sum of two matrices

Let us define for $j \in \mathbb{N}$, the set $U_j = \{(p_1, q_1, p_2, q_2, ..., p_j, q_j) : \sum_{i=1}^j p_i +$ $\sum j$ $j_{i=1}^j q_i = j-1, p_i, q_i \in \{0, 1, ..., j-1\}, i = \overline{1, j}\}.$

Theorem 2.1 Let $P, Q \in \mathbb{C}^{n \times n}$ be such that $\text{ind}(P) = r$ and $\text{ind}(Q) = s$ and $k \in \mathbb{N}$. If

$$
PQ\prod_{i=1}^{k}(P^{p_i}Q^{q_i}) = 0,
$$
\n(2.1)

for every $(p_1, q_1, p_2, q_2, ..., p_k, q_k) \in U_k$, then

$$
(P+Q)^d = Y_1 + Y_2
$$

+
$$
\sum_{i=1}^{k-1} \left(Y_1 (P^d)^{i+1} + (Q^d)^{i+1} Y_2 - \sum_{j=1}^{i+1} (Q^d)^j (P^d)^{i+2-j} \right) PQ(P+Q)^{i-1}, \quad (2.2)
$$

where

$$
Y_1 = Q^{\pi} \left(\sum_{i=0}^{s-1} Q^i (P^d)^i \right) P^d, \ Y_2 = Q^d \left(\sum_{i=0}^{r-1} (Q^d)^i P^i \right) P^{\pi}.
$$
 (2.3)

Proof : We will prove this result using mathematical induction on k . For $k = 1$ the theorem is true (see [11]). Now, we will assume that it holds for $k - 1$ and let us prove that it holds for k.

Using Lemma 1.1 we have that

$$
(P+Q)^d = \begin{bmatrix} I & Q \end{bmatrix} \left(\begin{bmatrix} P \\ I \end{bmatrix} \begin{bmatrix} I & Q \end{bmatrix} \right)^2 \right)^d \begin{bmatrix} P \\ I \end{bmatrix}
$$

$$
= \begin{bmatrix} I & Q \end{bmatrix} \begin{bmatrix} P^2 + PQ & P^2Q + PQ^2 \\ P + Q & PQ + Q^2 \end{bmatrix}^d \begin{bmatrix} P \\ I \end{bmatrix}.
$$

Denote by

$$
M = \begin{bmatrix} P^2 + PQ & P^2Q + PQ^2 \\ P + Q & PQ + Q^2 \end{bmatrix}, M_1 = \begin{bmatrix} PQ & P^2Q + PQ^2 \\ 0 & PQ \end{bmatrix}
$$
 and

$$
M_2 = \begin{bmatrix} P^2 & 0 \\ P + Q & Q^2 \end{bmatrix}.
$$

By computation, we show that for arbitrary $n \in \mathbb{N}$,

$$
M_1^n = \begin{bmatrix} (PQ)^n & W_n \\ 0 & (PQ)^n \end{bmatrix} \text{ and } M_2^n = \begin{bmatrix} P^{2n} & 0 \\ S_n & Q^{2n} \end{bmatrix}, \quad (2.4)
$$

where $W_n = \sum_{i=0}^{n-1}$ $_{i=0}^{n-1}(PQ)^{i}P(P+Q)Q(PQ)^{n-1-i}$ and $S_n = \sum_{i=0}^{n-1} Q^{2i}(P +$ $Q)P^{2(n-1-i)}$.

It is evident that $M_1^n = 0$, for every $n \geq \frac{k+1}{2}$ $\frac{1}{2}$. Also, by straightforward computation we have that

$$
M_1 M_2 \prod_{i=1}^{k-1} (M_1^{p_i} M_2^{q_i}) = 0,
$$

for every $(p_1, q_1, p_2, q_2, ..., p_{k-1}, q_{k-1}) \in U_{k-1}$. Hence, M_1 and M_2 satisfy the conditions of the theorem for $k - 1$. By induction hypothesis we get that

$$
(M_1 + M_2)^d = Z_1 + Z_2
$$

+
$$
\sum_{i=1}^{k-2} \left(Z_1(M_1^d)^{i+1} + (M_2^d)^{i+1} Z_2 - \sum_{j=1}^{i+1} (M_2^d)^j (M_1^d)^{i+2-j} \right) M_1 M_2 (M_1 + M_2)^{i-1},
$$

where Z_1 and Z_2 are defined by (2.3), in function of matrices M_1 and M_2 . Since $M_1^d = 0$ and $M_1^{\pi} = I$, we get that $Z_1 = 0$ and

$$
Z_2 = \sum_{i=0}^{\left[\frac{k+1}{2}\right]-1} (M_2^d)^{i+1} M_1^i.
$$

Therefore we get

$$
(M_1 + M_2)^d = Z_2 + \sum_{i=1}^{k-2} \left((M_2^d)^{i+1} Z_2 \right) M_1 M_2 (M_1 + M_2)^{i-1}.
$$
 (2.5)

We have that

$$
(M_2^d)^n = \begin{bmatrix} (P^d)^{2n} & 0\\ A_n & (Q^d)^{2n} \end{bmatrix},
$$
\n(2.6)

where $A_n = Y_1(P^d)^{2n} + (Q^d)^{2n}Y_2 - \sum_{i=1}^{2n} (Q^d)^i (P^d)^{2n+1-i}$, for any $n \in \mathbb{N}$. Also, we get that

$$
(M_1 + M_2)^n = \begin{bmatrix} P(P+Q)^{2n-1} & P(P+Q)^{2n-1}Q \\ (P+Q)^{2n-1} & (P+Q)^{2n-1}Q \end{bmatrix},
$$
(2.7)

for all $n \in \mathbb{N}$. Substituting (2.4), (2.6) and (2.7) into (2.5) it completes the $proof. $\square$$

As corollary of Theorem 2.1 in the case $k = 1$, we get the main result from [11].

Corollary 2.1 [11] Let $P, Q \in \mathbb{C}^{n \times n}$ be such that $\text{ind}(P) = r$ and $\text{ind}(Q) =$ s. If $PQ = 0$ then

$$
(P + Q)^d = Y_1 + Y_2,
$$

where Y_1 and Y_2 are defined by (2.3) .

If we consider the case where $k = 2$ in Theorem 2.1 we obtain as a corollary the main result in [13].

Corollary 2.2 [13] Let $P, Q \in \mathbb{C}^{n \times n}$ be such that $\text{ind}(P) = r$ and $\text{ind}(Q) =$ s. If $PQP = 0$ and $PQ^2 = 0$ then

$$
(P+Q)^d = Y_1 + Y_2 + \left(Y_1(P^d)^2 + (Q^d)^2 Y_2 - \sum_{i=1}^2 (Q^d)^i (P^d)^{3-i}\right) PQ.
$$

where Y_1 and Y_2 are defined by (2.3) .

When $k = 3$, we get the following new result.

Corollary 2.3 Let $P,Q \in \mathbb{C}^{n \times n}$ be such that $\text{ind}(P) = r$ and $\text{ind}(Q) = s$. If $PQP^2 = 0$, $PQPQ = 0$, $PQ^2P = 0$ and $PQ^3 = 0$ then

$$
(P+Q)^d = Y_1 + Y_2 + \left(Y_1(P^d)^2 + (Q^d)^2 Y_2 - \sum_{i=1}^2 (Q^d)^i (P^d)^{3-i}\right) PQ
$$

$$
+ \left(Y_1(P^d)^3 + (Q^d)^3 Y_2 - \sum_{i=1}^3 (Q^d)^i (P^d)^{4-i}\right) (PQP + PQ^2),
$$

where Y_1 and Y_2 are defined by (2.3).

3 Applications

Let M be a matrix of the form (1.1) , where A and D are square matrices not necessarily of the same size. Throughout this section we assume that $ind(A) = r$ and $ind(D) = s$.

The problem of finding M^d was studied in [7], where the authors gave a representation for M^d under the assumptions $\overrightarrow{BC} = 0$, $BD = 0$ and $\overrightarrow{DC} = 0$. This case was extended to the case when $BC = 0$ and $DC = 0$ (see [6]), and also to a case $BC = 0$, $BDC = 0$ and $BD^2 = 0$ (see [8]). In the next theorem we derive an explicit representation of M^d , which is an extension of a case when $BC = 0$ and $BD = 0$.

Using the special case of Theorem 2.1 when $k = 3$, we get the following result.

Theorem 3.1 Let M be given by (1.1). If $BCA = 0$, $BCB = 0$, $ABD = 0$ and $CBD = 0$, then

$$
M^d = \begin{bmatrix} A^d + B\Sigma_1 + ((A^d)^3 + B\Sigma_3)BC & (A^d)^2B + B(D^d)^2 + B\Sigma_2B \\ + B\Sigma_3BD & + B\Sigma_3BD \end{bmatrix},
$$

$$
D^d + \Sigma_1B + \Sigma_2BD
$$

where

$$
\Sigma_k = (D^d)^2 \sum_{i=0}^{r-1} (D^d)^{i+k} C A^i A^\pi + D^\pi \sum_{i=0}^{s-1} D^i C (A^d)^{i+k} (A^d)^2
$$

$$
- \sum_{i=0}^k (D^d)^{i+1} C (A^d)^{k-i+1}, \ k \ge 0.
$$
 (3.1)

Proof. If we split matrix M as

$$
M = \left[\begin{array}{cc} A & 0 \\ C & D \end{array} \right] + \left[\begin{array}{cc} 0 & B \\ 0 & 0 \end{array} \right] := P + Q,
$$

we have that $Q^2 = 0$, $PQP^2 = 0$ and $PQPQ = 0$. Hence, matrices P and Q satisfy the conditions of Corollary 2.3 and we get

$$
M^{d} = P^{d} + Q(P^{d})^{2} + (P^{d})^{2}Q + Q(P^{d})^{3}Q + (P^{d})^{3}QP + Q(P^{d})^{4}QP.
$$
 (3.2)

Now, by Lemma 1.2, we have that for any $k \geq 1$,

$$
(P^d)^k = \begin{bmatrix} (A^d)^k & 0 \\ \Sigma_{k-1} & (D^d)^k \end{bmatrix}.
$$

After computing all elements of the sum (3.2), we get that the statement of this theorem is valid. \square

Corollary 3.1 [8] If M is matrix of a form (1.1), such that $BC = 0$ and $BD = 0$, then .
 \overline{r} \overline{a}

$$
M^d = \left[\begin{array}{cc} A^d & (A^d)^2 B \\ \Sigma_0 & D^d + \Sigma_1 B \end{array} \right],
$$

where Σ_k , $(k \geq 0)$ is defined by (3.1).

In the next theorem we give an extension of a representation for M^d , which is proved in $[5]$.

Theorem 3.2 If matrix M, defined by (1.1), is such that $BCA = 0$, $DCA =$ 0, $CBC = 0$ and $CBD = 0$, then

$$
M^{d} = \begin{bmatrix} A^{d} + Z_{1}C + Z_{2}CA & Z_{0} + Z_{2}CB \\ (D^{d})^{2}C + C(A^{d})^{2} + CZ_{2}C & D^{d} + CZ_{1} + ((D^{d})^{3} + CZ_{3})CB \\ + CZ_{3}CA & D^{d} + CZ_{1} + ((D^{d})^{3} + CZ_{3})CB \end{bmatrix},
$$

where

$$
Z_k = (A^d)^2 \sum_{i=0}^{s-1} (A^d)^{i+k} BD^i D^{\pi} + A^{\pi} \sum_{i=0}^{r-1} A^i B (D^d)^{i+k} (D^d)^2
$$

$$
- \sum_{i=0}^k (A^d)^{i+1} B (D^d)^{k-i+1}, \ k \ge 0.
$$
 (3.3)

Proof. Using the splitting of matrix M

$$
M = \left[\begin{array}{cc} A & B \\ 0 & D \end{array} \right] + \left[\begin{array}{cc} 0 & 0 \\ C & 0 \end{array} \right] := P + Q
$$

we get that matrices P and Q satisfy the conditions of Corollary 2.3. Therefore

$$
M^{d} = P^{d} + Q(P^{d})^{2} + (P^{d})^{2}Q + Q(P^{d})^{3}Q + (P^{d})^{3}QP + Q(P^{d})^{4}QP.
$$
 (3.4)

Using Lemma 1.2, we get

$$
(P^d)^k = \begin{bmatrix} (A^d)^k & Y_{k-1} \\ 0 & (D^d)^k \end{bmatrix},
$$
\n(3.5)

where $k \geq 1$. Substituting (3.5) into (3.4) completes the proof. \Box

As a corollary of Theorem 3.2, we have the following result.

Corollary 3.2 [5] Let M be given by (1.1) and let $CA = 0$ and $CB = 0$. Then .
 \overline{r} \overline{a}

$$
M^d = \left[\begin{array}{cc} A^d + Z_1 C & Z_0 \\ (D^d)^2 C & D^d \end{array} \right],
$$

where Z_k , $(k \geq 0)$ is defined by (3.3).

In [8] authors gave an explicit representation for M^d under conditions $BD^{\pi}C = 0$, $BDD^{d} = 0$ and $DD^{\pi}C = 0$. Here we replace the last condition by the two weaker conditions $DD^{\pi}CA = 0$ and $DD^{\pi}CB = 0$.

Theorem 3.3 Let M be given by (1.1). If $BD^{\pi}C = 0$, $BDD^d = 0$, $DD^{\pi}CA = 0$ and $DD^{\pi}CB = 0$, then

$$
M^{d} = \begin{bmatrix} A^{d} + \sum_{i=0}^{s-1} (A^{d})^{i+3} BD^{i}C & \sum_{i=0}^{s-1} (A^{d})^{i+2} BD^{i} \\ \Phi_{0} + \sum_{i=0}^{s-1} \Phi_{i+2} BD^{i}C & D^{d} + \sum_{i=0}^{s-1} \Phi_{i+1} BD^{i} \end{bmatrix},
$$
(3.6)

where

$$
\Phi_k = \sum_{i=0}^{r-1} (D^d)^{i+k+2} C A^i A^\pi + D^\pi C (A^d)^{k+2}
$$
\n
$$
- \sum_{i=0}^k (D^d)^{i+k} C (A^d)^{k-i+1}, \ k \ge 0.
$$
\n(3.7)

Proof. First, notice that from conditions $BD^{\pi}C = 0$, $BDD^d = 0$, we have that $BD^{\pi} = B$ and $BC = 0$. If we split matrix M as $M = P + Q$, where

$$
P = \left[\begin{array}{cc} A & BD^{\pi} \\ C & D^2 D^d \end{array} \right], Q = \left[\begin{array}{cc} 0 & 0 \\ 0 & DD^{\pi} \end{array} \right],
$$

we have $QP^2 = 0$ and $QPQ = 0$. Also, we have that matrix Q is s-nilpotent, and therefore $Q^d = 0$. Applying Corollary 2.2 we get

$$
M^{d} = P^{d} \sum_{i=0}^{s-1} (P^{d})^{i} Q^{i} + (P^{d})^{2} \sum_{i=0}^{s-1} (P^{d})^{i} Q^{i} P - P^{d}.
$$
 (3.8)

Since $BD^{\pi}C = 0$ and $BD^{\pi}D^2D^d = 0$, matrix P satisfies the conditions of Corollary 3.1 and, after computing, we get

$$
(P^d)^i = \begin{bmatrix} (A^d)^i & (A^d)^{i+1} B D^{\pi} \\ \Phi_{i-1} & (D^d)^i + \Phi_i B D^{\pi} \end{bmatrix}, \text{ for all } i \ge 1,\tag{3.9}
$$

where Φ_i is defined by (3.7). After substituting (3.9) into (3.8) and computing the sum (3.8), we get (3.6). \Box

Theorem 3.4 Let M be given by (1.1). If $BD = 0$, $D^{\pi}CA^2 = 0$, $D^{\pi}CAB = 0$ 0 and $D^{\pi}CBC=0$, then

$$
M^{d} = \begin{bmatrix} A^{d} + (A^{d})^{3}BC + (A^{d})^{4}BCA & (A^{d})^{2}B + (A^{d})^{4}BCB \\ \Psi_{0} + \Psi_{2}BC + \Psi_{3}BCA & D^{d} + \Psi_{1}B + \Psi_{3}BCB \end{bmatrix},
$$
 (3.10)

where

$$
\Psi_k = \sum_{i=0}^{r-1} (D^d)^{i+k+2} C A^i A^\pi - \sum_{i=0}^k (D^d)^{i+1} C (A^d)^{k-i+1}, \ k \ge 0. \tag{3.11}
$$

Proof. We can split matrix M as $M = P + Q$, where

$$
P = \left[\begin{array}{cc} A & BD^{\pi} \\ DD^{d}C & D \end{array} \right], \ Q = \left[\begin{array}{cc} 0 & 0 \\ D^{\pi}C & 0 \end{array} \right]. \tag{3.12}
$$

Since $BD = 0$, $D^{\pi}CA^2 = 0$, $D^{\pi}CAB = 0$ and $D^{\pi}CBC = 0$, we have $QP^2 = 0$ and $QPQ = 0$. Moreover, $Q^2 = 0$. Applying Corollary 2.2, we get

$$
M^d = P^d + (P^d)^2 Q + (P^d)^3 Q P.
$$
 (3.13)

Matrix P satisfies the conditions of Corollary 3.1, so we get

$$
(P^d)^i = \begin{bmatrix} (A^d)^i & (A^d)^{i+1}B \\ \Psi_{i-1} & (D^d)^i + \Psi_i B \end{bmatrix}, \ i = 1, 2, 3. \tag{3.14}
$$

Substituting (3.14) into (3.13) we obtain (3.10). \Box

Remark 1) If the last condition $D^{\pi}CBC = 0$ from Theorem 3.4 is replaced with two weaker conditions $D^{\pi}CBCA = 0$ and $D^{\pi}CBCB = 0$. then matrices Q and P , defined by (3.12) , satisfy the conditions of Corollary 2.3. Therefore, we have the following representation for M^d :

$$
M^{d} = \begin{bmatrix} A^{d} + (A^{d})^{3}BC + (A^{d})^{4}BCA + (A^{d})^{5}BCBC & (A^{d})^{2}B + (A^{d})^{4}BCB \\ \Psi_{0} + \Psi_{2}BC + \Psi_{3}BCA + \Psi_{4}BCBC & D^{d} + \Psi_{1}B + \Psi_{3}BCB \end{bmatrix},
$$

where, for all $k \geq 0$, Ψ_k is defined by (3.11).

2) If conditions $D^{\pi}CA^2 = 0$, $D^{\pi}CAB = 0$ and $D^{\pi}CBC = 0$ are replaced with stronger conditions $D^{\pi}CA = 0$ and $D^{\pi}CB = 0$, we have that $BCA = BD^{\pi}CA = 0$ and $BCB = BD^{\pi}CB = 0$. Hence, we get the representation from Theorem 2.7 [8] as a corollary of Theorem 3.4.

4 Numerical examples

In this section we give two examples as illustrations of Theorems 3.1 and 3.2. In the following example a 2×2 block matrix M is given, which does not satisfy the conditions from [6, 7, 8]. The representation for M^d is obtained applying Theorem 3.1.

Example 4.1 Let M be a matrix of the form (1.1) , where

$$
A = \begin{bmatrix} 1 & -1 & 0 & 1 \\ 1 & 1 & -1 & 1 \\ 0 & -1 & 1 & 1 \\ 1 & -1 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} -1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 1 \\ -1 & 0 & 1 & 1 \end{bmatrix},
$$

$$
C = \begin{bmatrix} 1 & 0 & -1 & -1 \\ 0 & 3 & 0 & 5 \\ 1 & 0 & -1 & -1 \\ -1 & 0 & 0 & 1 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 & -1 & -1 \\ 3 & 3 & 3 & 3 \\ 1 & 0 & -1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.
$$

Since $BC \neq 0$, representations for M^d from [6, 7, 8] fail to apply. After calculating, we get that $BCA = 0$, $BCB = 0$, $ABD = 0$ and $CBD = 0$. Hence, the conditions of Theorem 3.1 are satisfied and after applying it we have that

.

The next example describes a 2×2 block matrix M, for which M^d can not be derived from the conditions given in [5]. However, we can apply Theorem 3.2 to obtain M^d .

Example 4.2 Let M be a matrix given by (1.1) , where

$$
A = \begin{bmatrix} -1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 1 \\ -1 & 0 & 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & -1 & -1 & 1 \\ 0 & 0 & 5 & 0 \\ 1 & -1 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}
$$

$$
C = \begin{bmatrix} 1 & 0 & -1 & -1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 \\ 1 & 0 & -1 & -1 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 & -1 & -1 \\ 0 & 3 & 0 & 5 \\ 1 & 0 & -1 & -1 \\ -1 & 0 & 0 & 1 \end{bmatrix}.
$$

We get that $CB \neq 0$, so we can not apply a representation for M^d from [5]. It can be checked that $BCA = 0$, $DCA = 0$, $CBC = 0$ and $CBD = 0$. Therefore we can apply Theorem 3.2 and we get

.

Acknowledgments

The authors would like to thank the anonymous referees for their useful suggestions, which helped to improve the original version of this paper.

References

- [1] A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, 2nd Edition, Springer Verlag, New York, 2003.
- [2] N. Castro–González, E. Dopazo, M. F. Martínez–Serrano, On the Drazin Inverse of sum of two operators and its application to operator matrices, J. Math. Anal. Appl. 350 (2008) 207–215
- [3] N. Castro–González, J.J. Koliha, New additive results for the g–Drazin inverse, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004) 1085–1097.
- [4] S. L. Campbell, C. D. Meyer, Generalized Inverse of Linear Transformations, Pitman, London, 1979; Dover, New York, 1991.
- [5] D. S. Cvetković–Ilić, J. Chen, Z. Xu, Explicit representation of the Drazin inverse of block matrix and modified matrix, Linear and Multilinear Algebra, 57.4 (2009) 355–364.
- [6] Δ D. S. Cvetković–Ilić, A note on the representation for the Drazin inverse of 2×2 block matrices, Linear Algebra Appl., 429 (2008) 242–248
- [7] D. S. Djordjević and P. S. Stanimirović, On the generalized Drazin inverse and generalized resolvent, Czechoslovak Math. J., 51(126) (2001) 617-634.
- [8] E. Dopazo, M. F. Martínez–Serrano, Further results on the representation of the Drazin inverse of a 2×2 block matrix, Linear Algebra Appl., 432 (2010) 1896–1904.
- [9] M.P. Drazin, Pseudoinverse in associative rings and semigroups, Amer. Math. Monthly 65 (1958) 506–514.
- [10] R.E. Harte, Invertibility and singularity, Dekker 1988.
- [11] R. E. Hartwig, G. Wang, Y. Wei, Some additive results on Drazin inverse, Linear Algebra Appl. 322 (2001) 207–217
- [12] C. D. Meyer, N. J. Rose, The index and the Drazin inverse of block triangular matrices, SIAM J. Appl. Math., 33 (1977) 1–7.
- [13] H. Yang, X. Liu, The Drazin inverse of the sum of two matrices and its applications, Journ.Comp.Appl.Math., 235 (2011) 1412–1417.